Evaluating an Integrated Time-Series Data Mining Environment ~A Case Study on a Chronic Hepatitis Data Mining~

 Hidenao Abe (Department of Medical Informatics, Shimane University, School of Medicine)
 Miho Ohsaki (Faculty of Engineering, Doshisha University)
 Hideto Yokoi (Department of Medical Informatics, Kagawa University Hospital)
 Takahira Yamaguchi (Faculty of Science and Technology, Keio University)

JSAI2005/Risk Management Systems with Intelligent Data Analysis

Contents

- Background
- The Integrated Time-Series Data Mining Environment
- Case Study on Chronic Hepatitis Data Mining
- Conclusion

Background

- KDD (Knowledge Discovery in Databases) has been widely known as a powerful process to extract useful knowledge.
- Collaboration of data miners, domain experts and system developers is important to success a data mining process.
- Knowledge depended on time stream is useful to predict some risk in future.

Issues and Our approach

- Many DM tools only supply DM methods
- There are no systematic support to carry out time-series data mining processes.

- Systematic support with preparing data mining methods from systematic analysis
- Human-system interaction

Map of our research

	Input time- series data	Mining approach	Post- processing
Our approach	ill-formed/ well formed	Rule induction based on time- series patterns	Visualizing patterns as graphs, <u>Active</u> interaction
Pattern extraction methods	ill-formed/ well formed	Particular pattern extraction algorithm	Visualizing patterns as graphs
Statistical methods, Signal processing methods	well formed	Particular time- series analysis method	(Visualizing as graphs)

Contents

Background

- The Integrated Time-Series Data Mining Environment
- Case Study on Chronic Hepatitis Data Mining
- Conclusion

The Integrated Time-Series Data Mining Environment

Input

ill-formed/well-formed time-series data

Output

IF-THEN rule based on time-series patterns

JSAI2005/Risk Management Systems with Intelligent Data Analysis

Procedures to Mine Time-Series Rules

- Data pre-processing
 Pre-processing for data construction
 Time-series pattern extraction
 Attribute selection
 Mining
 - □ Rule induction

- Post-processing of mined results
 - □ Visualizing mined rules
 - □ Rule selection
 - Rule evaluation support
- Other database procedures
 Selection with conditions
 Join

System Overview

System Flow

Procedures to Mine Time-Series Rules

- Data pre-processing Pre-processing for data construction **Time-series pattern** extraction Attribute selection Mining
 - Rule induction

- Post-processing of mined results
 - Visualizing mined rules
 - Rule selection
 - Rule evaluation support
- Other database procedures Selection with conditions Join

Data pre-processing for extracting timeseries patterns from ill-formed data

- Pre-processing for data construction
 - Data cleaning, Integration of values, Equalizing sampling cycle, Interpolation
- Time-series pattern extraction
 - Extracting sub-sequences, Clustering (K-means, EM, our original pattern extraction algorithm)

Post-processing with active humansystem interaction

Visualize mined rules

□ Visualizing text rules as graphical rules based on patterns

- Rule selection
 - Sorting graphical rules with indexes called objective measurement values
- Rule evaluation support

Predicting users' interest with re-using evaluated results

Contents

Background

- The Integrated Time-Series Data Mining Environment
- Case Study on Chronic Hepatitis Data Mining
- Conclusion

Description of the chronic hepatitis data mining

- Blood and urine laboratory test data
 - □ 1.9 million records
 - 965 test items
 - □ 771 patients (Hepatitis type B and C)
 - Up to 20 years for each sequence
- To find out risks related to IFN treatment results
 - □ 195 patients
 - Decided with GPT(ALT) values after finishing his/her IFN treatment
 - □ The risk means failures of his/her IFN treatment

Phase1: Focusing expert's interest

- Pattern extraction about ALB values during IFN treatment
- Data miners:
 - Setting up observation period, pattern extraction algorithm and its parameters
 - Taking the original pattern extraction algorithm based on irregular sampling to calculate similarities between two sub-sequences
- Physician:
 - Evaluating patterns with visualized patterns and raw data included in interesting pattern as graphs on the interfaces

ALB patterns during IFN treatment

Phase2: Ensuring expert's hypothesis

- Inducing rules to predict IFN treatment results from patterns of treatment periods
- Data miners:
 - Setting up observation period, pattern extraction algorithm and its parameters
 - Taking the original pattern extraction algorithm based on irregular sampling to calculate similarities between two sub-sequences
 - Selecting rule induction algorithm -> PART
- Physician:
 - Evaluating rules with visualized rules, patterns and raw data included in interesting pattern as graphs on the interfaces

Representative rules having opposite IFN treatment results

JSAI2005/Risk Management Systems with Intelligent Data Analysis

Improvement of pattern extraction algorithm

System Developers:

Improving the algorithm to calculate similarities between two sub-sequences

Evaluation results of the improvement of the pattern extraction algorithm

Evaluation Labels	Before Improvement	After Improvement
Very Interesting	4	15
Interesting	7	5
Fair	15	11
Difficult to understand	5	1
TOTAL	31	32

Contents

Background

- The Integrated Time-Series Data Mining Environment
- Case Study on Chronic Hepatitis Data Mining

Conclusion

Conclusion

- Implemented a time-series data mining environment, integrating time-series pattern extraction, rule induction, and rule evaluation support with active human-system interaction
- Succeeded in finding out a new hypothesis related to risks of IFN treatment result
- Developing active evaluation support re-using evaluations of domain experts
- Introducing algorithm selection sub-systems for each procedure to support data miners
- Applying this environment to other domains