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Background about rule selection
Many efforts have done to select rules with 
single objective index such as recall, precision, 
and so forth.
At least 40 objective interestingness measures

Based on rule evaluation indices
Based on similarities between rules

• Ohsaki et al. investigated the relationship between each index
and criterion of an expert. However, no single objective index
can express the human criterion exactly. [Ohsaki04].

• The availability of each interesting measure never validated
on other domains excepting the domain on their paper
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Research Issue

It is difficult to predict a human criterion with 
single objective index.

We construct rule evaluation models (REMs), 
combining multiple objective indices and evaluations 
of a human expert.

With REMs, we have implemented rule 
evaluation support method.

The system need accurate REMs to support human 
experts more exactly.
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Overview of rule evaluation support with rule 
evaluation models
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A comparison of learning algorithms to 
construct rule evaluation models

To construct more accurate REMs to support a human 
expert more exactly

Obtaining a data set consists of objective rule evaluation indices 
and human evaluations

Viewpoints of this comparison:
Accuracies to the whole dataset and Leave-One-Out validation, 
and their recalls and precisions of each class label
Minimum size of training subset to construct valid REMs
Contents of REMs from an actual data mining result
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ruleset

Overview of the case study with the 
meningitis datamining result

39 objective 
indices as
attributes of the 
training dataset

- decision tree
- neural network
-support vector machine
-etc..

Model Construction

Evaluation on:
- The whole 

training
dataset 

- Leave-one
-out

- Learning
curves

Evaluations from
a medical expert
as class labels

dataset

ruleID Accuracy Added_Value ・・・ YulesQ YulesY HumanExpert
Rule1 0.81 0.41 ・・・ 0.73 0.44 NI
Rule10 0.81 0.43 ・・・ 0.75 0.45 NI
Rule11 0.85 0.46 ・・・ 0.79 0.49 I
Rule12 0.84 0.56 ・・・ 0.87 0.58 I
Rule13 0.94 0.44 ・・・ 0.88 0.59 I
Rule14 0.81 0.43 ・・・ 0.75 0.45 NI

39 objective rule evaluation indices

dataset

ruleset

meningitis datasets
having 140 inst.
6（2×3）kinds of
diagnostic problems

244 rules

Sample of the data set
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Objective Rule Evaluation Indices
calculated on a validation dataset for each IF-THEN rule

Based on probability (26 indices)
Coverage, Prevalence, Precision, Recall, Support, Accuracy, Specificity, Lift, 
Leverage, Added Value, Relative Risk, Jaccard, Certainty Factor, Odds ratio, Yule’s 
Q, Yule’s Y, Kappa, Koelesgen’s Interestingness, Brin’s Interestingness,Brin’s
Conviction, GOI, Credibility, KSI, Laplace Correction, Collective Strength

Based on test statistics (3 indices)
Chi-Square( with only True/Positive, with a whole confusion matrix）, Gini Gain

Based on information theory (6 indices)
Mutual Information, J-Measure, YLI1, YLI2, YZI, K-Measure

Based on number of instances (3 indices)
Φ coefficient, PSI , Cosine Similarity

Based on similarity between rules on a validation dataset (2 indices)
GBI, Peculiarity

The 39 objective indices [Ohsaki 04]
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Learning algorithms for comparison
Decision Tree: J4.8 (an Java implementation of C4.5)
Neural Network: BPNN (with back-propagation)

Parameters of BP： learning rate=0.3，momentum= 0.2
Each unit corresponds to each class label in output layer

Classification Via Linear Regression: CLR
Linear regression expressions: “1-the other” for each class 
label
explanatory variable selection: greedy search with AIC

Sequential Minimal Optimization [Platt98]: SVM
SVM for multiple class: learning “1-the other” expressions for 
each class label
Kernel function setting: polynomial kernel

OneR
1. sorting with just one att.
2. setting thresholds based on class labels
3. constructs a rule set
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Performance Comparison of the five algorithms
(All of rules =244，’I’=48(19.7%), ‘NI’=187(76.6%), ‘NU’=9(3.7%))

I NI NU I NI NU

J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7

BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0

I NI NU I NI NU

J4.8 79.1 29.2 95.7 0.0 63.6 82.5 0.0

BPNN 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 75.8 27.1 92.0 0.0 37.1 82.3 0.0

Learning
Algorithms

Evaluation on the Whole Training Dataset

Evaluation with Leave－One-Out(LOO)

Acc.
Recall Precision

Acc.
Recall Precision

Learning
Algorithms

1. BPNN and J4.8 achieve higher than 85.7% of acc. with more than 77.5% reliability.
（BPNN tend to be over fitting, looking at it’s LOO acc., recalls and precisions）

2. ‘NU’ is difficult to predict, because of very minor in this rule set.
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Leaning curves of accuracies
(achieve rates for the accuracies on the whole training dataset)
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They can construct REMs with more than
86% of acc., just using 10% of training
subsets. 
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Rule Evaluation Models
The rule set from OneR The decision tree from J4.8

The linear regression
expressions from CLR
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Conclusion
Summary

Comparing learning algorithms to construct rule 
evaluation models for supporting a post-processing of 
data mining exactly

We have achieved that the algorithms can construct accurate rule
evaluation model with 39 objective rule evaluation indices.
The algorithms have been able to construct a valid rule 
evaluation model with 10% of training subset.
The algorithms constructed each model with different objective 
indices.

Feature works
Algorithm selection support for rule evaluation model 
construction 

attribute construction and selection algorithm selection
model learning algorithm selection

Applying this method to other data from other domains


