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Abstract

In this paper, we present a novel rule evaluation support
method for post-processing of mined results with rule eval-
uation models based on objective indices. Post-processing
of mined results is one of the key issues to make a data min-
ing process successfully. However, it is difficult for human
experts to evaluate many thousands of rules from a large
dataset with noises completely. To reduce the costs of rule
evaluation procedures, we have developed the rule evalua-
tion support method with rule evaluation models, which are
obtained with objective indices of mined classification rules
and evaluations of a human expert for each rule. To eval-
uate performances of learning algorithms for constructing
rule evaluation models, we have done a case study on the
meningitis data mining as an actual problem. Then we dis-
cuss the availability of our rule evaluation support method.

1. Introduction

In recent years, huge data are easily stored on informa-
tion systems in natural science, social science and business
domains, developing information technologies. With these
huge data, people hope to utilize them for their purposes.
Besides, data mining techniques have been widely known as
a process for utilizing stored data on database systems, com-
bining different kinds of technologies such as database tech-
nologies, statistical methods and machine learning meth-
ods. Especially, IF-THEN rules, which are produced by rule
induction algorithms, are discussed as one of highly us-
able and readable output of data mining. However, to large
dataset with hundreds attributes including noises, the pro-

cess often obtains many thousands of rules. From such huge
rule set, it is difficult for human experts to find out valuable
knowledge which are rarely included in the rule set.

To support such a rule selection, many efforts have done
using objective rule evaluation indices such as recall, preci-
sion, and other interestingness measurements (we call them
‘objective indices’ later). However, it is also difficult to es-
timate a criterion of a human expert with single objective
rule evaluation index, because his/her subjective criterion
such as interestingness and importance for his/her purpose
is influenced by the amount of his/her knowledge and/or
a passage of time. In addition, rule selection methods have
been never explicitly re-used the history of each rule evalua-
tion such as focused items and relationships between items,
which is only stored in his/her mind of the human expert.

To above issues, we have been developed an adaptive
rule evaluation support method for human experts with rule
evaluation models, which predict experts’ criteria based
on objective indices, re-using results of evaluations of hu-
man experts. In Section 3, we describe the rule evalua-
tion model construction method based on objective indices.
Then we present a performance comparison of learning al-
gorithms for constructing rule evaluation models with the
actual meningitis dataset [9] in Section 4. With this result
of the comparison, we discuss about the availability of our
rule evaluation model construction approach.

2. Related Work

To avoid the confusion of real human interests, objec-
tive indices, and subjective indices, we clearly define them
as follows: Objective Indices: The feature such as the cor-
rectness, uniqueness, and strength of a rule, calculated by



the mathematical analysis. Subjective Indices: The simi-
larity or difference between the information on interesting-
ness given beforehand by a human expert and those ob-
tained from a rule. Real Human Interests: The interest felt
by a human expert for a rule in his/her mind.

Focusing on interesting rule selection with objective in-
dices, researchers have developed more than forty objective
indices based on number of instances, probability, statistics,
information quantity, distance of rules or their attributes,
and complexity of a rule [10, 20, 22]. Most of these indices
are used to remove meaningless rules rather than to discover
really interesting ones for a human expert, because they can
not include domain knowledge. In contrast, a dozen of sub-
jective indices estimate how a rule fits with a belief, a bias or
a rule template formulated beforehand by a human expert.
Although these subjective indices are useful to discover re-
ally interesting rules to some extent due to their built-in do-
main knowledge, they depend on the precondition that a hu-
man expert is able to clearly formulate his/her interest. Al-
though interestingness indices were verified their availabil-
ities on each suggested domain, nobody has validated their
availabilities on the other domains or/and characteristics re-
lated to the background of a given dataset.

Ohsaki et. al[14] investigated the relation between objec-
tive indices and real human interests, taking real data min-
ing results and their human evaluations. In this work, the
comparison shows that it is difficult to predict real human
interests with a single objective index. Based on the result,
they indicated the possibility of logical combination of the
objective indices to predict real human interests more ex-
actly.

3. Rule Evaluation Support with Rule Evalu-
ation Model based on Objective Indices

We considered the process of modeling rule evaluations
of human experts as the process to clear up relationships be-
tween the human evaluations and features of input if-then
rules. With this consideration, we decided that the process
of rule evaluation model construction can be implemented
as a learning task. Figure1 shows the process of rule evalu-
ation model construction based on re-use of human evalua-
tions and objective indices for each mined rule.

At the training phase, attributes of a meta-level training
data set is obtained by objective indices such as recall, pre-
cision and other rule evaluation values. The human eval-
uations for each rule are joined as class of each instance.
To obtain this data set, a human expert has to evaluate the
whole or part of input rules at least once. After obtaining the
training data set, its rule evaluation model is constructed by
a learning algorithm. At the prediction phase, a human ex-
pert receives predictions for new rules based on their val-
ues of the objective indices. Since the task of rule evalua-
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tion models is a prediction, we need to choose a learning
algorithm with higher accuracy as same as current classifi-
cation problems.

4. Performance Comparison of Learning Al-
gorithms to Construct Rule Evaluation
Models

To predict human evaluation labels of a new rule based
on objective indices more exactly, we have to construct a
rule evaluation model, which has higher predictive accu-
racy.

In this section, we firstly present the result of an empir-
ical evaluation with the dataset from the mining result of
a meningitis data mining. Then we discuss about the avail-
ability of our method from the following three viewpoints:
accuracies of rule evaluation models, learning curves of
learning algorithms, and contents of learned rule evalua-
tion models. As an evaluation of accuracies of rule evalua-
tion models, we have compared predictive accuracies on the
whole dataset and Leave-One-Out. As for learning curves,
we obtained learning curves about accuracies to the whole
training dataset to evaluate whether each learning algorithm
can perform in early stage of a process of rule evaluations.
Accuracies from randomly sub-sampled training datasets
are averaged with 10 times trials on each percentage of sub-
set. As for elements of the rule evaluation models to the
whole dataset, we consider the characteristics of each learn-
ing algorithm on the attribute space consisted of the objec-
tive indices.

To construct a dataset to learn a rule evaluation model,
values of objective indices have been calculated for each
rule, taking 39 objective indices as shown in Table1. The
dataset for each rule set has the same number of instances
as the rule set. Each instance consists of 40 attributes in-
cluding the class attribute.

In this case study, we have taken 244 rules, which are



Theory Index Name (Abbreviation)
P Coverrage(Coverage), Prevalence(Prevalence) Precision(Precision), Recall(Recall)

Suppurt(Support), Specificity(Specificity), Accuracy(Accuracy), Lift(Lift)
Leverage(Leverage), Added Value(Added Value)[20], Klösgen’s Interestingness(KI)[13]
Relative Risk(RR)[1], Brin’s Interest(BI)[2], Brin’s Conviction(BC)[2], Certainty Factor(CF)[20]
Jaccard Coefficient(Jaccard)[20], F-Measure(F-M)[18], Odds Ratio(OR)[20], Credibility(Credibility)[8]
Yule’s Q(YuleQ)[20], Yule’s Y(YuleY)[20], Kappa(Kappa)[20], Collective Strength(CST)[20]
Gray andOrlowska’s Interestingness weighting Dependency(GOI)[7], Gini Gain(Gini)[20]

S χ2 Measure for One Quadrant(χ2-M1)[6], χ2 Measure for Four Quadrant(χ2-M4)[6]
I J-Measure(J-M)[19], K-Measure(K-M)[14], Mutual Information(MI)[20]

Yao and Liu’s Interestingness 1 based on one-way support(YLI1)[22]
Yao and Liu’s Interestingness 2 based on two-way support(YLI2)[22]
Yao and Zhong’s Interestingness(YZI)[22]

N Cosine Similarity(CSI)[20], φ Coefficient(φ)[20]
Laplace Correction(LC)[20], Piatetsky-Shapiro’s Interestingness(PSI)[15]

D Gago and Bento’s Interestingness(GBI)[5], Peculiarity(Peculiarity)[23]

Table 1. The objective rule evaluation indices for classification rules. P: Probability of the antecedent
and/or consequent of a rule. S: Statistical variable based on P. I: Information of the antecedent and/or
consequent of a rule. N: Number of instances included in the antecedent and/or consequent of a rule.
D: Distance of a rule from the others based on rule attributes.

mined from a dataset consisted of appearances of menin-
gitis patients and six kinds of diagnosis as shown in Ta-
ble2. Although the rules evaluated with displaying recall
and precision of each rule, the medical expert was not sup-
ported any method such as sorting with an objective index
and cutting off some rules with an objective index. For each
rule, we labeled three evaluations (I:Interesting, NI:Not-
Interesting, NU:Not-Understandable), according to evalua-
tion comments from the medical expert.

Dataset #Mined rules #’I’ #’NI’ #’NU’
Diag 53 15 38 0
C Cource 22 3 18 1
Culture+diag 57 7 48 2
Diag2 35 8 27 0
Course 53 12 38 3
Cult find 24 3 18 3
TOTAL 244 48 187 9

Table 2. Number of rules obtained by the
meningitis datamining result and distribution
of their class.

To this dataset, we applied five learning algorithms to
compare their performance as a rule evaluation model con-
struction method. We used the following learning algo-
rithms from Weka [21]: C4.5 decision tree learner [17]
called J4.8, neural network learner with back propagation
(BPNN) [11], support vector machines (SVM)1 [16], clas-
sification via linear regressions (CLR)2 [3], and One R[12].

1 The kernel function was set up polynomial kernel.
2 We set up the elimination of collinear attributes and the model selec-

tion with greedy search based on Akaike Informatio Metric.

4.1. Comparison on Classification Performance

In this section, we show the result of the comparisons
of accuracies on the whole dataset, recall of each class la-
bel, and precisions of each class label. Since Leave-One-
Out holds just one instance as the test data and remains
as the training data repeatedly for each instance of a given
dataset, we can evaluate the performance of a learning algo-
rithm to a new dataset in deterministic.

The accuracy of a validation dataset D is calcu-
lated with correctly predicted instances Correct(D) as
Acc(D) = (Correct(D)/|D|) × 100, where |D| means
the size of the dataset. The recall of class i on a vali-
dation dataset is calculated with correctly predicted in-
stances about the class Correct(Di) as Recall(Di) =
(Correct(Di)/|Di|) × 100, Also the precision of class
i is calculated with the size of instances predicted i as
Precision(Di) = (Correct(Di)/Predicted(Di)) × 100,
where Predicted(DI) means the size of instances which
are predicted as class i.

The results of the performances of the five learning al-
gorithms to the whole training dataset and the results of
Leave-One-Out are also shown in Table3. All of the accu-
racies, Recalls of I and NI, and Precisions of I and NI are
higher than predicting default labels.

Accuracy on the Training Dataset Comparing with the ac-
curacy of OneR, the other learning algorithms achieve equal
or higher performance with combination of multiple objec-
tive indices than sorting with single objective index. Look-
ing at Recall values on class I, BPNN have achieved the
highest performance. As for the other algorithms, they show
lower performance than OneR, because they have tended to
be learned classification patterns for the major class NI.



On the whole training dataset Leave-One-Out
Recall of Precision of Recall of Precision of

Acc. I NI NU I NI NU Acc. I NI NU I NI NU

J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0 75.8 27.1 92.0 0.0 37.1 82.3 0.0

Table 3. Accuracies(%), Recalls(%) and Precisions(%) of the five learning algorithms.

Robustness with Leave-One-Out Estimation Each value of
Leave-One-Out estimation shows robustness of each learn-
ing algorithm to an unknown test dataset. On the accura-
cies, these learning algorithms have achieved from 75.8%
to 81.9%. However, these learning algorithms have not been
able to classify the instances with class NU, which is a mi-
nor class label in this dataset.

Looking at each learning algorithm, the values of BPNN
show the trend of over fitting, comparing with its values of
training dataset and its values of Leave-One-Out. Although
OneR selects an adequate objective index to sort and clas-
sify 244 training datasets, it shows that the selection of just
one objective index limits the prediction performance to a
new dataset.

4.2. Learning Curves of the Learning Algorithms

Since the rule evaluation model construction method
needs evaluations of mined rules by a human expert, we
have investigated learning curves of each learning algorithm
to estimate how many evaluations are needed to construct an
adequate rule evaluation model. The upper table in Figure2
shows accuracies to the whole training dataset with each
subset of training dataset. The percentages of achievements
for each learning algorithm, comparing with the accuracy
with the whole dataset, are shown in the lower chart of Fig-
ure2. As shown in these results, SVM and CLR, which learn
hype-planes, achieves grater than 95% with only less than
10% of training subset. Although decision tree learner and
BPNN could learn better classifier to the whole dataset than
these hyper-plane learners, they need more training data to
learn accurate classifiers.

To eliminate known ordinary knowledge from large rule
set, it is needed to classify non-interesting rules correctly.
The upper table in Figure3 shows percentages of recalls on
NI. The lower chart in Figure3 also shows the percentages
of achievements on recall of NI, comparing with the recall
of NI on the whole training dataset. Looking at this result,
we can eliminate NI rules with rule evaluation models from
SVM and BPNN even if there is only 10% of rule evalu-
ations by a human expert. This is guaranteed with no less
than 80% precisions of all learning algorithms.

%training
  sample 10 20 30 40 50 60 70 80 90 100

J4.8 73.4 74.7 79.8 78.6 72.8 83.2 83.7 84.5 85.7 85.7
BPNN 74.8 78.1 80.6 81.1 82.7 83.7 85.3 86.1 87.2 86.9
SMO 78.1 78.6 79.8 79.8 79.8 80.0 79.9 80.2 80.4 81.6
CLR 76.6 78.5 80.3 80.2 80.3 80.7 80.9 81.4 81.0 82.8
OneR 75.2 73.4 77.5 78.0 77.7 77.5 79.0 77.8 78.9 82.4
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Figure 2. Learning Curves of accuracies(%)
on the learning algorithms with sub-sampled
training dataset.

4.3. Rule Evaluation Models on the Actual
Datamining Result Dataset

In this section, we present rule evaluation models to the
whole dataset learned with OneR, J4.8 and CLR, because
they are represented as explicit models such as a rule set, a
decision tree, and a set of linear models.

The rule set of OneR is shown in Figure4(a). OneR has
selected YLI1 [22] to classify the evaluation labels. Al-
though YLI1 corrects support to predict interestingness of a
human expert, YLI1 estimates a correctness of each rule on
a validation dataset.

As shown in Figure4(b), J4.8 learned the decision tree.
At the root node, this model takes Laplace Correction [20],
which is a corrected Precision with constant values. At the
other levels, it takes indices evaluating a correctness of a
rule such as Accuracy, Precision and Recall. Coverage and
Prevalence are indices to evaluate a generality of the an-
tecedent and the consequent of a rule. GOI [7] calculate
index values with the classification result of a rule. Pecu-
liarity [23] sums up differences of antecedents between one



IF                                 YLI1 < 0.02 THEN  "I"
IF  YLI1 >= 0.02  and  YLI1 < 0.29  THEN  "NI"
IF  YLI1 >= 0.29  and  YLI1 < 0.43  THEN  "I"
IF  YLI1 >= 0.43  and  YLI1 < 0.44  THEN  "NI"
IF  YLI1 >= 0.44  and  YLI1 < 0.55  THEN  "I"
IF  YLI1 >= 0.55  and  YLI1 < 0.63  THEN  "NI"
IF  YLI1 >= 0.63  and  YLI1 < 0.83  THEN  "I"
IF  YLI1 >= 0.83                              THEN  "NI"

NU =
      0.6202 * Specificity +
      0.6224 * Accuracy +
     -1.1384 * Leverage +
     -0.6895 * RelativeRisk +
      0.3704 * CertaintyFactor +
      0.5722 * OddsRatio +
      0.7656 * BI +
     -0.222  * Credibility +
     -0.3941 * LaplaceCorrection +
      0.7986 * GiniGain +
     -0.0966 * GBI +
     -0.8895

NI =
      1.7173 * Precision +
     -0.5063 * Accuracy +
      0.5673 * RelativeRisk +
     -1.2718 * CertaintyFactor +
      0.5955 * YulesQ +
     -0.4609 * K-Measure +
      0.4613 * PSI +
     -0.4181 * Peculiarity +
      0.5302

I =
     -1.4417 * Precision +
     -0.7286 * Specificity +
      0.4085 * Lift +
      0.6297 * CertaintyFactor +
     -1.4477 * CollectiveStrength +
      1.5449 * GiniGain +
     -0.5318 * PSI +
      0.4981 * Peculiarity +
      1.4872

(a)

(c)
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Figure 4. Learned models to the meningitis data mining result dataset: (a) rule set learnd from OneR,
(b) decision tree learned from J4.8, (c) linear regression models learned from CLR.

% training
   sample 10 20 30 40 50 60 70 80 90 100

J4.8 82.7 85.3 92.8 88.7 93.2 92.7 93.2 92.9 94.0 97.9
BPNN 84.6 86.6 90.4 90.2 92.2 91.9 92.7 93.9 94.2 89.8
SMO 93.3 92.7 96.8 96.1 95.9 95.8 96.3 96.0 96.3 97.3
CLR 88.3 89.6 94.4 94.0 94.3 94.1 94.1 94.2 94.3 97.3
OneR 88.4 84.0 92.4 91.4 92.0 92.3 93.4 92.7 92.1 96.3
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Figure 3. Learning Curves of recalls(%) for NI
on the learning algorithms with sub-sampled
training dataset.

rule and the other rules in the same rule set.

Figure4(c) shows linear models to classify each class.
The prediction has done with integrating the responses of
these linear models. As for models to class NI and I, they
have the same indices such as Precision, Certainty Fac-
tor, PSI, and Peculiarity with opposite coefficients. The
strongest factors on these models are Precision and Gini
Gain, which increase their values with the correctness of
a rule. To class NU, the strongest factor is Leverage based
on Precision with a correction using a generality of a rule.

4.4. Discussion

On the Classification Performances As shown in Table3,
J4.8 decision tree learner and BPNN neural network learner
work better than the other algorithms on both of the actual
problems. The classification result about class I indicates
that these instances are difficult to separate with liner ex-
pressions in this attribute space based on the 39 objective
indices. To predict such labels correctly, we should apply
nonlinear classifier learned from nonlinear learners.

Although these five learning algorithms have achieved
81.6% of the highest accuracy in the Leave-One-out estima-
tion, we need to obtain more accurate rule evaluation mod-
els with meta-learning algorithms such as boosting, bagging
and so forth.

On the Learning Curves With this analysis of the learn-
ing curves about each amount of training samples, we con-
sider the following guideline: At early stage of rule evalu-
ation support, the system should select hyper-plane learn-
ers to construct better rule evaluation models rapidly. Then
closing stage of evaluations, the system should select more
accurate learning algorithm to predict minor but valuable
rules.

On the Learned Rule Evaluation Models Looking at in-
dices used in learned rule evaluation models, they are not
only the group of indices increasing with a correctness of a
rule, but also they are used some different groups of indices
on different models. This indicates that the rule model con-
struction method needs to select prior algorithms on data
pre-processing procedures and rule evaluation model learn-
ing algorithms.



5. Conclusion

In this paper, we have described rule evaluation support
method with rule evaluation models to predict evaluations
for an IF-THEN rule based on objective indices, re-using
evaluations of a human expert. As the result of the per-
formance comparison with the five learning algorithms on
39 objective indices, rule evaluation models have achieved
higher accuracies than random predictions. In the estima-
tion of robustness for a new rule with Leave-One-Out, we
have achieved more than 75.8% of accuracies with these
learning algorithms. On the evaluation with learning curves
to the whole training dataset, SVM and CLR have achieved
more than 95% of achievement ratio compared to the accu-
racy of the whole training dataset with just 10% of subset as
their training dataset. These result related to performances
of rule evaluation models indicate the availability of this
rule evaluation support for a human expert. The rule eval-
uation models of the learning algorithms to the dataset in-
clude different objective indices for different learning mod-
els. We will be needed to select a proper attribute set for
each learning algorithm to construct better rule evaluation
model.

As future works, we will introduce a selection method
of learning algorithms to construct a proper rule evaluation
model according to each situation. At the same time, we will
apply this rule evaluation support method to other data min-
ing results from different kind of domains not only medical
domains but also business domain and so forth.
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