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Abstract

In this paper, we present a novel rule evaluation support
method for post-processing of mined results with rule eval-
uation models based on objective indexes. Post-processing
of mined results is one of the key issues to make a data min-
ing process successfully. However, it is difficult for human
experts to evaluate many thousands of rules from a large
dataset with noises completely. To reduce the costs of rule
evaluation procedures, we have developed the rule evalua-
tion support method with rule evaluation models, which are
obtained with objective rule evaluation indexes and evalu-
ations of a human expert for each rule. Since the method
is needed more accurate rule evaluation models, we have
compared learning algorithms to construct rule evaluation
models with the actual meningitis data mining result and
actual rule sets from UCI datasets. Then we show the avail-
ability of our adaptive rule evaluation support method.

1. Introduction

In recent years, data mining techniques have been widely
known as a hopeful process to utilize huge data which are
easily stored on information systems in various fields. Es-
pecially, IF-THEN rule extraction methods are discussed as
one of highly usable and readable output of data mining.
However, to large dataset with hundreds attributes including
noises, the process often obtains many thousands of rules.
From such huge rule set, it is difficult for human experts to
find out valuable knowledge which are rarely included in
the rule set. To support such a crucial rule evaluation pro-
cedure, many efforts have done to select valuable ones us-
ing an objective rule evaluation index such as recall, preci-
sion, and other interestingness measurements[6, 12, 14] (we
call them ‘objective indexes’ later). However, it is also dif-

ficult to estimate a criterion of a human expert with single
objective index, because subjective criterion of the expert is
influenced by the amount of his/her knowledge and/or a pas-
sage of time.

To above issues, we have developed an adaptive rule
evaluation support method for human experts with rule eval-
uation models, which predict criteria of a human expert
based on multiple objective indexes. In Section 2, we ex-
plain the rule evaluation model construction method con-
cretely. Then we present a performance comparison of
learning algorithms for constructing rule evaluation mod-
els in Section 3. Finally, we discuss about the availability of
our rule evaluation model construction approach.

2. Rule Evaluation Support with Rule Evalu-
ation Model based on Objective Indexes

We considered the process of modeling rule evaluations
of human experts as the process to clear up relationships
between the human evaluations and features of input if-
then rules. With this consideration, we have decided to de-
sign such rule evaluation process as a learning task. Fig-
ure1 shows the process of rule evaluation model construc-
tion based on re-use of human evaluations and objective in-
dexes for each mined rule. At the training phase, attributes
of a meta-level training data set is obtained by objective
indexes such as recall, precision and other rule evaluation
values. The human evaluations for each rule are joined as
class of each instance. To obtain this data set, a human ex-
pert has to evaluate the whole or part of input rules at least
once. After obtaining the training data set, its rule evalua-
tion model is constructed by a learning algorithm. At the
prediction phase, a human expert receives predictions for
new rules based on their values of the objective indexes.
Then the evaluation for the new rules became new evalua-
tion labels for another rule evaluation model training phase.
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Figure 1. Overview of the construction
method of rule evaluation models.

3. Performance Comparison of Learning Al-
gorithms for Rule Model Construction

To predict human evaluation labels of a new rule based
on objective indexes more exactly, the method have to con-
struct a better rule evaluation model. So we evaluate our
method from the following three viewpoints: accuracies of
rule evaluation models, learning curves of learning algo-
rithms, and contents of learned rule evaluation models.

To evaluate our approach, we have taken the dataset
from the mining result of a meningitis data mining[4]. Then
to confirm the performance of our approach on the other
datasets, we have also taken the rule sets from three UCI
benchmark datasets[5]. To construct a dataset to learn a rule
evaluation model, values of objective indexes have been cal-
culated for each rule, taking 39 objective indexes investi-
gated by Ohsaki et. al [9].

To these dataset, we applied five learning algorithms
to compare their performance as a rule evaluation model
construction method. We used the following learning al-
gorithms from Weka[13]: C4.5 decision tree learner[11]
called J4.8, neural network learner with back propagation
(BPNN)[7], support vector machines (SVM)1[10], classifi-
cation via linear regressions (CLR)2[1], and OneR[8].

3.1. Constructing Rule Evaluation Models on an
Actual Datamining Result

In this case study, we have taken 244 rules, which are
mined from a dataset consisted of appearances of meningi-
tis patients and six kinds of diagnosis as shown in Table1.
For each rule, we labeled three evaluations (I:Interesting,
NI:Not-Interesting, NU:Not-Understandable), according to
comments from a medical expert.

1 The kernel funcution was set up polynomial kernel.
2 We set up the elimination of collinear attributes and the model selec-

tion with greedy search based on Akaike Informatio Metric.

Dataset #Mined rules #’I’ #’NI’ #’NU’
Diag 53 15 38 0
C Cource 22 3 18 1
Culture+diag 57 7 48 2
Diag2 35 8 27 0
Course 53 12 38 3
Cult find 24 3 18 3
TOTAL 244 48 187 9

Table 1. Number of rules obtained by the
meningitis datamining result and distribution
of their class.

On the whole training dataset
Recall of Precision of

Acc. I NI NU I NI NU

J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0

Leave-One-Out
Recall of Precision of

Acc. I NI NU I NI NU
J4.8 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 75.8 27.1 92.0 0.0 37.1 82.3 0.0

Table 2. Accuracies(%), Recalls(%) and Preci-
sions(%) of the five learning algorithms.

3.1.1. Comparison on Classification Performance The
performances of the five learning algorithms to the whole
training dataset and the results of Leave-One-Out(LOO) are
also shown in Table2. LOO is a deterministic evaluation
method to measure a robustness of learning algorithms to
another unknown dataset.

As shown in Table2, all of the accuracies, Recalls of I
and NI, and Precisions of I and NI are higher than pre-
dicting default labels. In addition, the learning algorithms,
which combine multiple objective indexes, achieve equal
or higher performance than that of OneR. Looking at Re-
calls on class I, BPNN have achieved the highest perfor-
mance. As for the other algorithms, they have tended to be
learned classification patterns for the major class NI. On the
accuracies of LOO, these learning algorithms have achieved
from 75.8% to 81.9%, excepting that of minor class NU. Al-
though OneR selects an adequate objective index to sort and
classify 244 training datasets, it is not always work well to
select just one objective index.

3.1.2. Learning Curves of the Learning Algorithms We
have investigated learning curves of each learning algorithm
to estimate how many evaluations are needed to construct
an adequate rule evaluation model, because our method re-
quires evaluations of mined rules by a human expert at least
once. The upper table in Figure2 shows accuracies to the



%training
  sample 10 20 30 40 50 60 70 80 90 100

J4.8 73.4 74.7 79.8 78.6 72.8 83.2 83.7 84.5 85.7 85.7
BPNN 74.8 78.1 80.6 81.1 82.7 83.7 85.3 86.1 87.2 86.9
SMO 78.1 78.6 79.8 79.8 79.8 80.0 79.9 80.2 80.4 81.6
CLR 76.6 78.5 80.3 80.2 80.3 80.7 80.9 81.4 81.0 82.8
OneR 75.2 73.4 77.5 78.0 77.7 77.5 79.0 77.8 78.9 82.4
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Figure 2. Learning Curves of accuracies(%)
on the learning algorithms with sub-sampled
training dataset.

whole training dataset with each subset of training dataset.
The percentages of achievements for each learning algo-
rithm, comparing with the accuracy with the whole dataset,
are shown in the lower chart of Figure2. As shown in these
results, SVM and CLR, which learn hype-planes, achieves
grater than 95% with only less than 10% of training subset.
Besides, J4.8 and BPNN need more training data to learn
accurate classifiers than SVM and CLR.

3.1.3. Rule Evaluation Models on the Actual Datamin-
ing Result Dataset Figure3 shows the readable rule eval-
uation models of the meningitis data mining result learned
with OneR, J4.8 and CLR. The rule set of OneR is shown

IF                                 YLI1 < 0.02 THEN  "I"
IF  YLI1 >= 0.02  and  YLI1 < 0.29  THEN  "NI"
IF  YLI1 >= 0.29  and  YLI1 < 0.43  THEN  "I"
IF  YLI1 >= 0.43  and  YLI1 < 0.44  THEN  "NI"
IF  YLI1 >= 0.44  and  YLI1 < 0.55  THEN  "I"
IF  YLI1 >= 0.55  and  YLI1 < 0.63  THEN  "NI"
IF  YLI1 >= 0.63  and  YLI1 < 0.83  THEN  "I"
IF  YLI1 >= 0.83                              THEN  "NI"

NU =
      0.6202 * Specificity +
      0.6224 * Accuracy +
     -1.1384 * Leverage +
     -0.6895 * RelativeRisk +
      0.3704 * CertaintyFactor +
      0.5722 * OddsRatio +
      0.7656 * BI +
     -0.222  * Credibility +
     -0.3941 * LaplaceCorrection +
      0.7986 * GiniGain +
     -0.0966 * GBI +
     -0.8895

NI =
      1.7173 * Precision +
     -0.5063 * Accuracy +
      0.5673 * RelativeRisk +
     -1.2718 * CertaintyFactor +
      0.5955 * YulesQ +
     -0.4609 * K-Measure +
      0.4613 * PSI +
     -0.4181 * Peculiarity +
      0.5302

I =
     -1.4417 * Precision +
     -0.7286 * Specificity +
      0.4085 * Lift +
      0.6297 * CertaintyFactor +
     -1.4477 * CollectiveStrength +
      1.5449 * GiniGain +
     -0.5318 * PSI +
      0.4981 * Peculiarity +
      1.4872

(a)

(c)
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Figure 3. Learned models to the meningitis
data mining result dataset.

in Figure3(a). OneR has selected YLI1[14] to classify the
evaluation labels. Although YLI1 was suggested to predict
interestingness of a human expert, YLI1 estimates a correct-
ness of each rule on a validation dataset. As shown in Fig-
ure3(b), J4.8 leaned the decision tree. At upper level includ-

ing the root node, this model takes Laplace Correction[12],
Accuracy, Precision and Recall, which represent correct-
ness of rules. Coverage and Prevalence represent a gener-
ality of the antecedent and the consequent of a rule. At the
lower level of the tree takes GOI[3] and Peculiarity[15],
which calculates specificity of each rule compared to other
rules. Figure3(c) shows linear models to classify each class.
As for models to class NI and I, they have the same in-
dexes such as Precision, Certainty Factor, PSI, and Pecu-
liarity with opposite coefficients. The strongest factors on
these models are Precision and Gini Gain, which increase
their values with the correctness of a rule. To class NU, the
strongest factor is Leverage based on Precision with a cor-
rection using a generality of a rule.

3.2. Constructing Rule Evaluation Models on Ar-
tificial Evaluation Labels

We have also evaluated our rule evaluation model con-
struction method with rule sets from three datasets of UCI
Machine Learning Repository to confirm the lower limit
performances on probabilistic class distributions.

We selected the following three datasets: Mushroom,
Heart, and Internet Advertisement Identification (called In-
ternetAd later). With these datasets, we obtained rule sets
with bagged PART, which repeatedly executes PART[2] to
bootstrapped training sub-sample datasets. To these rule
sets, we calculated the 39 objective indexes as attributes of
each rule. As for the class of these datasets, we set up three
class distributions with multinomial distribution. The class
distribution for ‘Distribution I is P = (0.35, 0.3, 0.3) where
pi is the probability for class i. Thus the number of class i in
each instance Dj become piDj . As the same way, the prob-
ability vector of ‘Distribution II is P = (0.3, 0.5, 0.2), and
‘Distribution III is P = (0.3, 0.65, 0.05). Table3(A) shows
us the datasets with three different class distributions.

3.2.1. Accuracy Comparison on Classification Perfor-
mances To above datasets, we have attempted the five
learning algorithms to estimate whether their classification
results can go to or beyond the accuracies of just predict-
ing each default class. Table3(B) shows the accuracies of
the five learning algorithms to each class distribution of the
three datasets. J48 and BPNN always work better than just
predicting a default class.

3.2.2. Evaluation on Learning Curves We also executed
learning curve analysis on these artificial data sets as shown
in Section 3.1.2. Table3(C) shows sizes of minimum train-
ing subset, which needs to go beyond percentages of a de-
fault class by each learning algorithm. Although the per-
formances SVM, CLR and OneR suffered from probabilis-
tic class distributions of the datasets, the trend of that SVM
and CLR can achieve as good performance as its of whole
training dataset earlier is not suffered.



(A)

L1 L2 L3

Mushroom 101 31 38 32 37.6

Heart 341 98 125 118 36.7

InternetAd 114 38 38 38 33.3

Mushroom 101 25 47 29 46.5

Heart 341 115 166 60 48.7

InternetAd 114 31 59 24 51.8

Mushroom 101 5 63 33 62.4

Heart 341 105 215 21 63.0

InternetAd 114 32 75 7 65.8

#Class Labels#Mined

 Rules
%Def. Class

Distribution I

Distribution II

Distribution III

(B)

J48 BPNN SVM CLR OneR

Mushroom 51.5 58.4 38.6 50.5 49.5

Heart 47.5 56.9 34.9 38.4 53.1

InternetAd 62.3 73.7 36.8 44.7 57.9

Mushroom 58.4 59.4 42.6 52.5 53.5

Heart 51.9 62.5 48.6 50.1 58.4

InternetAd 74.6 77.2 49.1 54.4 58.8

Mushroom 62.4 66.3 62.4 61.4 64.4

Heart 65.1 72.1 63.0 64.5 67.7

InternetAd 86.0 86.0 65.8 67.5 71.1

Distribution I

Distribution II

Distribution III

(C)

J48 BPNN SVM CLR OneR

Mushroom 14 11 18 28 15

Heart 30 85 - 27 64

InternetAd 4 2 3 3 9

Mushroom 50 36 - 67 67

Heart 92 75 102 341 146

InternetAd 41 36 - 59 62

Mushroom 101 101 101 - 101

Heart 143 109 341 341 211

InternetAd 45 43 98 108 74

Distribution III

Distribution I

Distribution II

Table 3. (A)Datasets of the rule sets learned from the UCI benchmark datasets, (B)Accuracies(%)
on whole training datasets labeled with three different distributions, (C)Number of minimum train-
ing sub-samples to outperform %Def. class.

4. Conclusion

In this paper, we have described rule evaluation support
method with rule evaluation models to predict evaluations
for an IF-THEN rule based on objective indexes, re-using
evaluations of a human expert.

As the result of the performance comparison with the five
learning algorithms, rule evaluation models have achieved
higher accuracies than just predicting each default class on
both of the actual and artificial dataset. We also investigated
the amount of training sub-samples to construct more ac-
curate rule evaluation models with less samples. The result
shows that we can construct enough models with only 10%.
These results indicate that our method can support human
rule evaluations with adaptive rule evaluation models based
on objective indexes.

As future works, we will introduce a selection method
of learning algorithms to construct a proper rule evalua-
tion model according to each situation. We also apply this
rule evaluation support method to estimate other data min-
ing result such as decision tree, rule set, and committee of
them with objective indexes, which evaluate whole mining
results.
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