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Abstract. In this paper, we present evaluations of learning algorithms
for a novel rule evaluation support method in data mining post-processing,
which is one of the key processes in a data mining process. It is dif-
ficult for human experts to evaluate many thousands of rules from a
large dataset with noises completely. To reduce the costs of rule evalu-
ation task, we have developed the rule evaluation support method with
rule evaluation models, which are learned from a dataset consisted of
objective indices and evaluations of a human expert for each rule. To
enhance adaptability of rule evaluation models, we introduced a con-
structive meta-learning system to choose proper learning algorithms for
constructing them. Then, we have done a case study on the meningitis
data mining result, the hepatitis data mining results and rule sets from
the eight UCI datasets.

1 Introduction

In recent years, with huge data stored on information systems in natural science,
social science and business domains, developing information technologies, people
hope to find out valuable knowledge suited for their purposes. Besides, data
mining techniques have been widely known as a process for utilizing stored data
on database systems, combining different kinds of technologies such as database
technologies, statistical methods and machine learning methods. In particular,
if-then rules are discussed as one of highly usable and readable output of data
mining. However, to large dataset with hundreds attributes including noise, the
process often obtains many thousands of rules, which rarely include valuable
rules for a human expert.
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Fig. 1. Overview of the construction method of rule evaluation models.

To support such a rule selection, many efforts have done using objective
rule evaluation indices such as recall, precision, and other interestingness mea-
surements [16, 30, 33] (we call them “objective indices” later). However, it is
also difficult to estimate a criterion of a human expert with single objective rule
evaluation index, because his/her subjective criterion such as interestingness and
importance for his/her purpose is influenced by the amount of his/her knowledge
and/or a passage of time.

To above issues, we have been developed an adaptive rule evaluation support
method for human experts with rule evaluation models, which predict experts’
criteria based on objective indices, re-using results of evaluations of human ex-
perts. In Section 2, we describe the rule evaluation model construction method
based on objective indices. Since our method needs more accurate rule evaluation
model to support a human expert more exactly, we present a performance com-
parison of learning algorithms for constructing rule evaluation models in Section
3. With the results of the comparison, we present the availability of learning algo-
rithms from constructive meta-learning system[1] for our rule evaluation model
construction approach.

2 Rule Evaluation Support with Rule Evaluation Model
based on Objective Indices

We considered the process of modeling rule evaluations of human experts as the
process to clear up relationships between the human evaluations and features
of input if-then rules. With this consideration, we decided that the process of
rule evaluation model construction can be implemented as a learning task. Fig.1
shows the process of rule evaluation model construction based on re-use of human
evaluations and objective indices for each mined rule.

At the training phase, attributes of a meta-level training data set is obtained
by objective indices such as recall, precision and other rule evaluation values.
The human evaluations for each rule are joined as class of each instance. To
obtain this data set, a human expert has to evaluate the whole or part of input
rules at least once. After obtaining the training data set, its rule evaluation



model is constructed by a learning algorithm. At the prediction phase, a human
expert receives predictions for new rules based on their values of the objective
indices. Since the task of rule evaluation models is a prediction, we need to
choose a learning algorithm with higher accuracy as same as current classification
problems.

3 Performance Comparisons of Learning Algorithms for
Rule Model Construction

To predict human evaluation labels of a new rule based on objective indices
more exactly, we have to construct a rule evaluation model, which has higher
predictive accuracy.

In this section, we firstly present the results of an empirical evaluation with
the dataset from the result of a meningitis data mining [14], hepatitis data mining
[22, 2] and that of the eight rule sets from eight UCI benchmark datasets [15].
With the experimental results, we discuss about the following three view points:
performances of rule evaluation models, minimum training subset to construct
a valid rule evaluation model, and contents of learned rule evaluation models.

As evaluations of performances of rule evaluation models, we have compared
predictive accuracies on the whole dataset and Leave-One-Out. The accuracy of a
validation dataset D is calculated with correctly predicted instances Correct(D)
as Acc(D) = (Correct(D)/|D|) × 100, where |D| means the size of the dataset.
Recalls of class i on a validation dataset is calculated with correctly predicted
instances about the class Correct(Di) as Recall(Di) = (Correct(Di)/|Di|) ×
100, where |Di| means the size of instances with class i. Also the precision of
class i is calculated with the size of instances predicted i as Precision(Di) =
(Correct(Di)/Predicted(Di)) × 100.

As for estimating minimum training subset to construct a valid rule evalua-
tion model, we obtained learning curves about accuracies to the whole training
dataset to evaluate whether each learning algorithm can perform in early stage
of a process of rule evaluations.

On the result of the actual data mining, we have investigated elements of
the rule evaluation models. Then, we consider the characteristics of objective
indices, which are used in these rule evaluation models.

To construct a dataset to learn a rule evaluation model, values of objective
indices have been calculated for each rule, taking 39 objective indices as shown in
Table1. Thus, each dataset for each rule set has the same number of instances as
the rule set. Each instance consists of 40 attributes including the class attribute.

To these dataset, we applied nine learning algorithms to compare their per-
formance as a rule evaluation model construction method. We have taken the
following learning algorithms from Weka [31]: C4.5 decision tree learner [27]
called J4.8, neural network learner with back propagation (BPNN) [17], support



Table 1. The objective rule evaluation indices for classification rules used in this
research. P: Probability of the antecedent and/or consequent of a rule. S: Statistical
variable based on P. I: Information of the antecedent and/or consequent of a rule.
N: Number of instances included in the antecedent and/or consequent of a rule. D:
Distance of a rule from the others based on rule attributes.

Theory Index Name (Abbreviation) [Reference Number of Literature]
P Coverage(Coverage), Prevalence(Prevalence)

Precision(Precision), Recall(Recall)
Support(Support), Specificity(Specificity)
Accuracy(Accuracy), Lift(Lift)
Leverage(Leverage), Added Value(Added Value)[30]
Klösgen’s Interestingness(KI)[19], Relative Risk(RR)[3]
Brin’s Interest(BI)[6], Brin’s Conviction(BC)[6]
Certainty Factor(CF)[30], Jaccard Coefficient(Jaccard)[30]
F-Measure(F-M)[28], Odds Ratio(OR)[30]
Yule’s Q(YuleQ)[30], Yule’s Y(YuleY)[30]
Kappa(Kappa)[30], Collective Strength(CST)[30]
Gray andOrlowska’s Interestingness weighting Dependency(GOI)[12]
Gini Gain(Gini)[30], Credibility(Credibility)[13]

S χ2 Measure for One Quadrant(χ2-M1)[11]
χ2 Measure for Four Quadrant(χ2-M4)[11]

I J-Measure(J-M)[29], K-Measure(K-M)[23]
Mutual Information(MI)[30]
Yao and Liu’s Interestingness 1 based on one-way support(YLI1)[33]
Yao and Liu’s Interestingness 2 based on two-way support(YLI2)[33]
Yao and Zhong’s Interestingness(YZI)[33]

N Cosine Similarity(CSI)[30], Laplace Correction(LC)[30]
φ Coefficient(φ)[30], Piatetsky-Shapiro’s Interestingness(PSI)[24]

D Gago and Bento’s Interestingness(GBI)[10]
Peculiarity(Peculiarity)[34]

vector machines (SVM)5[25], classification via linear regressions (CLR)6[7], and
OneR [18]. In addition, we have also taken the following selective meta-learning
algorithms: Bagging [5], Boosting [9] and Stacking7 [32].

3.1 A Case Study on the Meningitis Datamining Result

In this case study, we have taken 244 rules, which are mined from six datasets
about six kinds of diagnostic problems as shown in Table 2. These datasets are
consisted of appearances of meningitis patients as attributes and diagnoses for
each patient as class. Each rule set was mined with each proper rule induction al-
gorithm composed by a constructive meta-learning system called CAMLET [14].
For each rule, we labeled three evaluations (I: Interesting, NI: Not-Interesting,
NU: Not-Understandable), according to evaluation comments from a medical
expert.

Constructing a proper learning algorithm to construct the meningitis
rule evaluation model We have developed a constructive meta-learning sys-
5 The kernel function was set up polynomial kernel.
6 We set up the elimination of collinear attributes and the model selection with greedy

search based on Akaike Information Metric.
7 This stacking has taken the other seven learning algorithms as base-level learner and

J4.8 as meta-level learner.



Table 2. Description of the meningitis datasets and their datamining results

Dataset #Attributes #Class #Mined rules #’I’ rules #’NI’ rules #’NU’ rules
Diag 29 6 53 15 38 0
C Cource 40 12 22 3 18 1
Culture+diag 31 12 57 7 48 2
Diag2 29 2 35 8 27 0
Course 40 2 53 12 38 3
Cult find 29 2 24 3 18 3
TOTAL — — 244 48 187 9

tem called CAMLET [1] to choose a proper learning algorithm to a given dataset
with machine learning method repository. To implement the method repository,
firstly, we identified each functional part called method from the following eight
learning algorithms: Version Space [21], AQ15 [20], Classifier Systems [4], Neu-
ral Network, ID3 [26], C4.5, Bagging and Boosting. With the method repository
CAMLET constructs a proper learning algorithm to a given dataset, searching
possible learning algorithm specification space which is obtained by the method
repository.

Since we have set up the number of refinement N = 100, CAMLET searched
up to 400 learning algorithms from 6000 possible learning algorithms for the
best one. Fig. 2 shows the constructed algorithm by CAMLET to the dataset of
meningitis datamining result.

This algorithm iterates boosting of C4.5 decision tree for randomly split
training datasets. Each classifier set generated by C4.5 decision tree learner is
reinforced with the method from Classifier Systems. Then, the learned committee
aggregates with weighted voting from boosting.

START apportionment of
credit

voting with
weighting based

on error rate
END

5 times

5 times

generating valudation
and training datasets
with random split

decision tree
generation
with entoropy
+information ratio
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or low target
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Fig. 2. The learning algorithm constructed by CAMLET for the dataset of the menin-
gitis datamining result.

Comparison on classification performances In this section, we show the
result of the comparisons of accuracies on the whole dataset, recall of each class
label, and precisions of each class label.

The results of the performances of the nine learning algorithms to the whole
training dataset and the results of Leave-One-Out are also shown in Table 3.
All of the accuracies, Recalls of I and NI, and Precisions of I and NI on the
whole training dataset are higher than just predicting each label at random.
The accuracies of Leave-One-Out show robustness of each learning algorithm by
which have been achieved from 75.8% to 81.9%.

The learning algorithm constructed by CAMLET shows the second accuracy
to the whole training dataset, comparing with other learning algorithms. Thus,



Table 3. Accuracies (%), Recalls (%) and Precisions (%) of the nine learning algo-
rithms.

I NI NU I NI NU

CAMLET 89.4 70.8 97.9 11.1 85.0 90.2 100.0

Stacking 81.1 37.5 96.3 0.0 72.0 87.0 0.0
Boosted J4.8 99.2 97.9 99.5 100.0 97.9 99.5 100.0
Bagged J4.8 87.3 62.5 97.9 0.0 81.1 88.4 0.0
J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0

I NI NU I NI NU

CAMLET 80.3 7.4 73.0 0.0 7.4 73.0 0.0

Stacking 81.1 37.5 96.3 0.0 72.0 87.0 0.0
Boosted J4.8 74.2 37.5 87.2 0.0 39.1 84.0 0.0
Bagged J4.8 77.9 31.3 93.6 0.0 50.0 81.8 0.0
J4.8 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 75.8 27.1 92.0 0.0 37.1 82.3 0.0

Acc.
Recall Precision

Learning
Algorithms

Learning
Algorithms

Evaluation on the training dataset

Leave－One-Out(LOO)

Acc.
Recall Precision

CAMLET shows higher adaptability than the other selective meta-learning al-
gorithms.

Estimating minimum training subsets for each learning algorithms The
left table in Fig.3 shows accuracies to the whole training dataset with each subset
of training dataset. Each data point is averaged accuracies from 10 times trials
of randomly sub-sampled training datasets. The percentages of achievements for
each learning algorithm, comparing with the accuracy with the whole dataset,
are shown in the right chart of Fig.3.

%training
  sample 10 20 30 40 50 60 70 80 90 100

CAMLET 76.7 78.4 80.8 81.6 81.7 82.6 82.8 84.8 84.6 89.3
Stacking 69.6 77.8 75.3 77.9 72.2 82.2 75.4 83.4 86.5 81.1
Boosted J4.8 74.8 77.8 79.6 82.8 83.6 85.5 86.8 88.0 89.7 99.2
Bagged J4.8 77.5 79.5 80.5 81.4 81.8 82.1 83.2 83.2 84.1 87.3
J4.8 73.4 74.7 79.8 78.6 72.8 83.2 83.7 84.5 85.7 85.7
BPNN 74.8 78.1 80.6 81.1 82.7 83.7 85.3 86.1 87.2 86.9
SMO 78.1 78.6 79.8 79.8 79.8 80.0 79.9 80.2 80.4 81.6
CLR 76.6 78.5 80.3 80.2 80.3 80.7 80.9 81.4 81.0 82.8
OneR 75.2 73.4 77.5 78.0 77.7 77.5 79.0 77.8 78.9 82.4
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Fig. 3. Accuracies (%) with training sub-samples to the whole training dataset on the
left table. And the chart of achieve rates(%) to the accuracies with the whole training
dataset on the meta-learning algorithms.

As shown in these results, SVM, CLR and bagged J4.8 achieves higher than
95% with only less than 10% of training subset. Looking at the result of learn-
ing algorithm constructed by CAMLET, this algorithm achieves almost as same
performance as bagged J4.8 with smaller training subset. However, it can out-
perform bagged J4.8 with larger training subsets. Although the constructed al-
gorithm based on boosting, the combination of reinforcement method from Clas-
sifier Systems and the outer loop has been able to overcome a disadvantage of
boosting for smaller training subset.

Rule evaluation models on the meningitis datamining result dataset
In this section, we present the statistics of rule evaluation models to the 10000
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Fig. 4. Top 10 of frequencies of indices used in models of each learning algorithm with
10000 bootstrap samples of the meningitis datamining result dataset and executions.

bootstrap re-sampled dataset learned with the algorithm constructed by CAM-
LET, OneR, J4.8 and CLR, because they are represented as explicit models such
as a rule set, a decision tree, and a set of linear models.

As shown in Fig. 4, indices used in learned rule evaluation models are not
only the group of indices increasing with a correctness of a rule, but also they are
used some different groups of indices on different models. Almost indices such as
YLI1, Laplace Correction, Accuracy, Precision, Recall, Coverage, PSI and Gini
Gain are the former type of indices on the models. The later indices are GBI
and Peculiality, which sums up difference of antecedents between one rule and
the other rules in the same rule set.

3.2 A Case Study on the Chronic Hepatitis Datamining Results

In this case study, we have taken four datamining results about chronic hepatitis
as shown in the left table of Table 4. These datasets are consisted of patterns for
each laboratory test value about blood and urine of chronic hepatitis patients as
attributes. Firstly, we have done datamining processes to find out relationships
between patterns of attributes and patterns of GPT as class, which is one of
the important test items to grasp conditions of each patient, two times. Second,
we have also done other datamining processes to find out relationships between
patterns of attributes and results of interferon (IFN) therapy two times. For
each rule, we labeled three evaluations (EI: Especially Interesting, I: Interesting,
NI: Not-Interesting, NU: Not-Understandable), evaluated by another medical
expert.

Constructing proper learning algorithms for chronic hepatitis datamin-
ing results As same as the construction of the proper learning algorithm for
the meningitis data mining result, we constructed proper learning algorithms for
the datasets of the four chronic hepatitis datamining results. The right table of
Table 4 shows an overview of constructed learning algorithms for each dataset.



Table 4. Description of datasets of the chronic hepatitis datamining results (left table).
And Overview of constructed learning algorithms by CAMLET to the datasets of the
chronic hepatitis datamining results (right table).

EI I NI NU

GPT

Phase1(GPT1) 30 3 8 16 3 53.33

Phase2(GPT2) 21 2 6 12 1 57.14

IFN

First Time(IFN1) 26 4 7 11 7 42.31

Second Time(IFN2) 32 15 5 11 1 46.88

Class Distribution

#Rules %Def class

original

classifier set

overall

control structure

final

eval. method

GPT1 C4.5 tree Bagging Best selection

GPT2 C4.5 tree CS+Boost+Iteration Weighted Voting

IFN1 C4.5 tree CS+Boost+Iteration Weighted Voting

IFN2 C4.5 tree CS+Boost+Iteration Weighted Voting

CS  means including reinfoecement of classifier set from Classifiser Systems
Boost  means including methods and control structure from Boosting

Comparison on classification performances The results of the perfor-
mances of the nine learning algorithms to the whole training dataset and the
results of Leave-One-Out are shown in Table5. Almost of the accuracies on the
whole training dataset are higher than just predicting each default class. The
accuracies of Leave-One-Out show robustness of each learning algorithm. To
GPT1 and IFN1, they are lower than just predicting default classes, because the
medical expert evaluated these datamining results without certain criterion in
his mind.

Table 5. Accuracies(%), Recalls(%) and Precisions(%) of the nine learning algorithms
on training dataset(the left table) and Leave-One-Out(the center table). Minimum
training instances to construct valid rule evaluation models with each learning algo-
rithm (the right table).

On Training Leave-One-Out

EI I NI NU EI I NI NU EI I NI NU EI I NI NU

GPT1

J4.8 96.7 100.0 88.9 100.0 100.0 66.7 100.0 100.0 100.0 50.0 0.0 60.0 60.0 0.0 0.0 75.0 56.3 0.0 14

BPNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 30.0 0.0 12.5 50.0 0.0 0.0 12.5 50.0 0.0 14

SVM 56.7 0.0 100.0 68.2 14.3 0.0 12.5 93.8 33.3 46.7 0.0 0.0 65.0 11.1 0.0 0.0 81.3 33.3 20

CLR 63.3 0.0 66.7 62.5 0.0 0.0 50.0 93.8 0.0 40.0 0.0 14.3 50.0 0.0 0.0 12.5 68.8 0.0 16

OneR 60.0 0.0 66.7 59.3 0.0 0.0 25.0 100.0 0.0 43.3 0.0 25.0 55.6 0.0 0.0 37.5 62.5 0.0 14

BagJ4.8 93.3 75.0 87.5 100.0 100.0 100.0 87.5 93.8 100.0 33.3 0.0 12.5 50.0 0.0 0.0 12.5 56.3 0.0 14

BooJ4.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 43.3 0.0 42.9 62.5 0.0 0.0 37.5 62.5 0.0 12

Stacking 70.0 0.0 62.5 72.7 0.0 0.0 62.5 100.0 0.0 36.7 0.0 33.3 61.5 0.0 0.0 37.5 50.0 0.0 24

CAMLET 73.3 0.0 50.0 87.5 100.0 0.0 75.0 87.5 66.7 43.3 0.0 6.7 33.3 3.3 0.0 6.7 33.3 3.3 16

GPT2

J4.8 90.5 66.7 85.7 100.0 0.0 100.0 100.0 91.7 0.0 76.2 0.0 66.7 90.9 0.0 0.0 100.0 83.3 0.0 6

BPNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 66.7 0.0 83.3 81.8 0.0 0.0 83.3 75.0 0.0 5

SVM 95.2 100.0 100.0 92.3 100.0 50.0 100.0 100.0 100.0 81.0 0.0 100.0 91.7 25.0 0.0 83.3 91.7 100.0 5

CLR 85.7 50.0 100.0 85.7 0.0 50.0 83.3 100.0 0.0 76.2 0.0 83.3 84.6 0.0 0.0 83.3 91.7 0.0 16

OneR 85.7 0.0 75.0 92.3 0.0 0.0 100.0 100.0 0.0 81.0 0.0 66.7 91.7 0.0 0.0 100.0 91.7 0.0 11

BagJ4.8 90.5 100.0 75.0 100.0 0.0 100.0 100.0 91.7 0.0 76.2 0.0 66.7 90.9 0.0 0.0 100.0 83.3 0.0 6

BooJ4.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 76.2 0.0 66.7 100.0 0.0 0.0 100.0 83.3 0.0 6

Stacking 61.9 66.7 0.0 100.0 0.0 100.0 0.0 91.7 0.0 71.4 0.0 83.3 76.9 0.0 0.0 83.3 83.3 0.0 11

CAMLET 81.0 0.0 75.0 84.6 0.0 0.0 100.0 91.7 0.0 76.2 0.0 28.6 47.6 0.0 0.0 28.6 47.6 0.0 8

INF1

J4.8 88.5 80.0 100.0 83.3 100.0 100.0 71.4 90.9 100.0 19.2 37.5 0.0 20.0 0.0 75.0 0.0 18.2 0.0 8

BPNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 26.9 40.0 22.2 25.0 25.0 50.0 28.6 18.2 25.0 6

SVM 46.2 26.7 0.0 70.0 100.0 100.0 0.0 63.6 25.0 34.6 21.4 0.0 54.5 0.0 75.0 0.0 54.5 0.0 10

CLR 53.8 100.0 0.0 47.6 66.7 50.0 0.0 90.9 50.0 19.2 33.3 0.0 28.6 0.0 25.0 0.0 36.4 0.0 16

OneR 50.0 0.0 50.0 50.0 0.0 0.0 85.7 63.6 0.0 19.2 0.0 11.1 23.5 0.0 0.0 14.3 36.4 0.0 18

BagJ4.8 96.2 80.0 100.0 100.0 100.0 100.0 100.0 90.9 100.0 26.9 33.3 37.5 22.2 0.0 50.0 42.9 18.2 0.0 10

BooJ4.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 23.1 42.9 0.0 27.3 0.0 75.0 0.0 27.3 0.0 8

Stacking 11.5 0.0 12.5 14.3 0.0 0.0 14.3 18.2 0.0 23.1 0.0 33.3 28.6 0.0 0.0 57.1 18.2 0.0 16

CAMLET 76.9 100.0 60.0 80.0 100.0 100.0 85.7 72.7 50.0 30.8 11.5 0.0 19.2 0.0 11.5 0.0 19.2 0.0 14

INF2

J4.8 90.6 88.2 100.0 90.9 0.0 100.0 80.0 90.9 0.0 75.0 76.5 66.7 75.0 0.0 86.7 40.0 81.8 0.0 6

BPNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 37.5 50.0 28.6 22.2 0.0 53.3 40.0 18.2 0.0 8

SVM 56.3 72.7 0.0 45.0 100.0 53.3 0.0 81.8 100.0 31.3 36.4 0.0 28.6 0.0 26.7 0.0 54.5 0.0 8

CLR 65.6 63.2 100.0 60.0 0.0 80.0 60.0 54.5 0.0 34.4 41.2 20.0 30.0 0.0 46.7 20.0 27.3 0.0 16

OneR 68.8 62.5 0.0 87.5 0.0 100.0 0.0 63.6 0.0 68.8 60.0 0.0 100.0 0.0 100.0 0.0 63.6 0.0 16

BagJ4.8 90.6 88.2 100.0 90.9 0.0 100.0 80.0 90.9 0.0 71.9 70.0 100.0 72.7 0.0 93.3 20.0 72.2 0.0 8

BooJ4.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 71.9 76.5 100.0 70.0 0.0 86.7 60.0 63.6 0.0 6

Stacking 40.6 46.2 0.0 33.3 0.0 80.0 0.0 9.1 0.0 53.1 58.8 0.0 58.3 0.0 66.7 0.0 63.6 0.0 12

CAMLET 90.6 83.3 100.0 100.0 100.0 100.0 100.0 72.7 100.0 43.8 18.8 0.0 18.8 0.0 18.8 0.0 18.8 0.0 8

Min.

EstimAcc
Precision Recall

Acc
Precision Recall

The learning algorithm constructed by CAMLET shows almost the same pre-
dictive performance as Boosted J4.8 on LOO, because these algorithms consist
of C4.5 decision tree learner with boosting control structure.
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Fig. 5. Top 10 of frequencies of indices used in models of 　 learning algorithms com-
posed by CAMLET with 10000 bootstrap samples of the chronic hepatitis datamining
results’ datasets.

Estimating minimum training subset to construct a valid rule evalua-
tion model As same as the case study of meningitis dataset, we have estimated
the minimum training subsets for a valid model, which works better than just
predicting a default class as shown in Table 5.

To GPT1 and IFN1, these algorithms need more instances to learn valid rule
evaluation models than that of GPT2 and IFN2. This caused by the difference
of human criteria when evaluating each datamining result.

Rule evaluation models on the chronic hepatitis datamining result
dataset In this section, we present the statistics of rule evaluation models to
the 10000 times bootstrap re-sampled dataset learned with the algorithm con-
structed by CAMLET to compare the difference among the models.

As shown in Fig. 5, these models consist of not only indices expressing correct-
ness of rules but also other types of indices as shown in meningitis rule evaluation
models (Fig. 4). This shows that the medical expert evaluated these rules with
both of correctness and interestingness based on his background knowledge.

On each problem, the variance of indices has been reduced in each second
time datamining process. This indicates that the medical expert evaluated each
second time datamining result with more certain criterion than it of each first
time datamining process.

3.3 An Experiment on Artificial Evaluation Labels

We have also evaluated our rule evaluation model construction method with rule
sets from four datasets of UCI Machine Learning Repository [15] to investigate
the performances without any human criteria.

We have taken the following eight dataset: anneal, audiology, autos, balance-
scale, breast-cancer, breast-w, colic, and credit-a. With these datasets, we ob-
tained rule sets with bagged PART, which repeatedly executes PART [8] to
bootstrapped training sub-sample datasets.

To these rule sets, we calculated the 39 objective indices as attributes of
each rule. As for the class of these datasets, we set up three class distributions



with multinomial distribution. Table 6 shows us the process flow diagram to
obtain the datasets and the description of datasets with three different class
distributions. The class distribution for ‘Distribution I’ is P = (0.35, 0.3, 0.3)
where pi is the probability for class i. Thus, the number of class i in each instance
Dj become piDj . As the same way, the probability vector of ‘Distribution II’ is
P = (0.3, 0.65, 0.05). We have investigated performances of learning algorithms
on these balanced class distribution and unbalanced class distribution.

Table 6. Flow diagram to obtain datasets and the datasets of the rule sets learned
from the UCI benchmark datasets

A dataset from 
UCI ML repository

Obtaining rule sets with
bagged PART (iteration=10)

rule sets of the UCI dataset

Obtaining rule sets with
bagged PART (iteration=10)

A dataset for rule evaluation 
model construction

append random class
label for each instance

L1 L2 L3
(0.30) (0.35) (0.35)

anneal 95 33 39 23 41.1
audiology 149 44 58 47 38.9
autos 141 30 48 63 44.7
balance-
scale

281 76 102 103 36.7

breast-
cancer

122 41 34 47 38.5

breast-w 79 29 26 24 36.7
colic 61 19 18 24 39.3
credit-a 230 78 73 79 34.3

(0.30) (0.65) (0.05)
anneal 95 26 63 6 66.3
audiology 149 49 91 9 61.1
autos 141 41 95 5 67.4
balance-
scale

281 90 178 13 63.3

breast-
cancer

122 42 78 2 63.9

breast-w 79 22 55 2 69.6
colic 61 22 36 3 59.0
credit-a 230 69 150 11 65.2

Distribution II

#Mined
Rules

#Class labels
%Def. class

Distribution I

Constructing proper learning algorithms for rule sets from UCI datasets
As same as the construction of the proper learning algorithm for the meningitis
data mining result, we constructed proper learning algorithms for the datasets of
rule sets from the eight UCI datasets. Table7 shows an overview of constructed
learning algorithms for each dataset which has two different class distributions.

Table 7. Overview of constructed learning algorithms by CAMLET to the datasets of
the rule sets learned from the UCI benchmark datasets

original

classifier set

overall

control structure

final

eval. method

original

classifier set

overall

control structure

final

eval. method

anneal C4.5 tree Win+Boost+CS
Weighted

Voting
C4.5 tree Boost+CS

Weighted

Voting

audiology ID3 tree Boost Voting Random RuleSimple Iteration Best Select.

autos Random RuleWin+Iteration
Weighted

Voting
Random RuleBoost

Weighted

Voting

balance-

scale
Random RuleBoost Voting Random RuleCS+GA Voting

breast-

cancer
Random RuleGA+Iteration Voting Random RuleWin+Iteration

Weighted

Voting

breast-w ID3 tree Win
Weighted

Voting
ID3 tree CS+Iteration

Weighted

Voting

colic Random RuleCS+Win Voting ID3 tree Win+Iteration Voting

credit-a C4.5 tree Win+Iteration Voting ID3 tree CS+Boost+Iteration Best Select.

CS  means including reinfoecement of classifier set from Classifiser Systems
Boost  means including methods and control structure from Boosting
Win  means including methods and control structure from Window Strategy
GA  means including reinforcement of classifier set with Genetic Algorithm

Distribution I Distribution II

Accuracy Comparison on Classification Performances To above datasets,
we have attempted the nine learning algorithms to estimate whether their classi-
fication results can go to or beyond the percentages of just predicting each default
class. The left table of Table 8 shows the accuracies of the nine learning algo-
rithms to each class distribution of the eight datasets. The learning algorithms
constructed by CAMLET, boosted J4.8, bagged J4.8, J4.8 and BPNN always
work better than just predicting a default class. However, their performances
are suffered from probabilistic class distributions to larger datasets.



Table 8. Accuracies(%) on whole training datasets labeled with three different dis-
tributions(The left table). Number of minimum training sub-samples to outperform
%Def. class(The right table).

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 74.7 71.6 47.4 56.8 55.8 87.4 100.0 27.4 77.9

audiology 47.0 51.7 40.3 45.6 52.3 87.2 47.0 21.5 63.1

autos 66.7 63.8 46.8 46.1 56.0 89.4 66.7 29.8 53.2

balance-

scale 58.0 59.4 39.5 43.4 53.0 83.3 58.0 39.5 39.5

breast-

cancer 55.7 61.5 40.2 50.8 59.0 88.5 70.5 23.8 41.0

breast-w 86.1 91.1 38.0 46.8 54.4 96.2 100.0 34.2 77.2

colic 91.8 82.0 42.6 60.7 55.7 88.5 100.0 29.5 67.2

credit-a 57.4 48.7 35.7 39.1 54.8 91.3 57.4 26.5 55.7

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 74.7 70.5 67.4 70.5 73.7 84.2 94.7 67.4 66.3

audiology 65.8 67.8 63.8 64.4 67.1 83.2 67.1 59.7 65.1

autos 85.1 73.8 68.1 70.2 73.8 87.9 100.0 66.7 67.4

balance-

scale 70.5 69.8 64.8 65.8 69.8 80.1 85.8 62.6 63.0

breast-

cancer 71.3 77.0 66.4 65.6 77.9 86.9 79.5 73.0 73.0

breast-w 74.7 86.1 73.4 68.4 74.7 87.3 100.0 63.3 70.9

colic 70.5 77.0 65.6 60.7 73.8 85.2 100.0 49.2 60.7

credit-a 70.9 70.0 65.2 65.2 71.3 85.7 87.8 61.7 65.2

Distribution II

Distribution I

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 20 14 17 29 29 16 14 36 20

audiology 21 18 65 64 41 21 14 56 27

autos 38 28 76 77 70 28 28 77 31

balance-

scale 12 14 15 15 32 14 9 51 128

breast-

cancer 16 17 22 41 22 14 14 41 36

breast-w 7 10 10 18 14 10 6 19 11

colic 8 8 9 22 14 8 8 24 8

credit-a 9 12 16 30 28 9 8 51 19

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET

anneal 54 58 64 76 - 42 38 64 46

audiology 64 73 45 76 107 50 50 103 84

autos 66 102 84 121 98 45 39 76 76

balance-

scale 118 103 133 162 156 86 92 132 -

breast-

cancer 50 31 80 92 80 38 36 60 41

breast-w 44 36 31 48 71 34 34 52 53

colic 28 24 46 30 42 28 22 48 54

credit-a 118 159 - - 173 76 76 120 109

Distribution II

Distribution I

Estimating minimum training subset to construct a valid rule evalua-
tion model As same as the case study of meningitis dataset, we have estimated
the minimum training subsets for a valid model, which works better than just
predicting a default class as shown in the right table in Table8. To datasets with
balanced class distribution, almost of learning algorithm can construct valid
models with less than 20% of given training datasets. However, to datasets with
unbalanced class distribution, they need more training subsets to construct valid
models, because their performances with whole training dataset fall to the per-
centages of default class of each dataset as shown in the left table in Table8.

4 Conclusion

In this paper, we have described the evaluation of the nine learning algorithms
for a rule evaluation support method with rule evaluation models to predict
evaluations for an IF-THEN rule based on objective indices, re-using evaluations
of a human expert.

As the result of the performance comparison with the nine learning algo-
rithms on the dataset of meningitis data mining result, rule evaluation models
have achieved higher accuracies than just predicting each default class. To this
dataset, the learning algorithm constructed by CAMLET shows higher accuracy
with higher reliability than the other eight learning algorithm including three
meta-learning algorithm. From the results on the datasets of hepatitis datamin-
ing results, we find out that the difference of human evaluation criteria appear
as the differences of rule evaluation models on both of performances and their
contents. To datasets of rule sets obtained from the eight UCI datasets, although
hyper-plane type learners, such as SVM and CLR, and Stacking have failed to
go to the percentage of default class of some datasets, the other learning algo-
rithms have been able to go to or beyond each percentage of default class with
smaller than 50% of each training dataset. Considering the difference between
the actual evaluation labeling and the artificial evaluation labeling, it is shown
that the medical expert evaluated with noticing particular relations between an
antecedent and a class/another antecedent in each rule. This indicates that our



approach can detect differences of human criteria as differences of performances
of rule evaluation models.

As future work, we will improve the method repository of CAMLET to con-
struct more suitable learning algorithms for rule evaluation models. We also
apply this rule evaluation support method to other datasets from various do-
mains.
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