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Feature Selection Algorithms
Filter Approach

Fast execution with low performance

Wrapper Approach
Slow execution with high performance
Kind of search problem

However, to determine starting subset is not considered 
as a component of these algorithms

Problem
How to choose the proper feature selection algorithm 
(FSA) to a given dataset, according to a user 
requirement
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Overview of meta-learning scheme

学習学習学習Learning Algorithms

Meta-Learning
Executor

データセットData Set

Meta Knowledge

A Better result to the given data set
than its done 

by each base-level learning algorithm

Meta-learning
scheme
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Selective meta-learning scheme and 
our motivation

Integrating base-level classifiers, which are learned 
with different training data sets generating by

“Bootstrap Sampling” (bagging)
weighting ill-classified instances (boosting)

Integrating base-level classifiers, which are learned 
from different learning algorithms

simple voting (voting)
constructing meta-level classifier with a meta-level 
training data set (stacking, cascading)

They donThey don’’t work well,t work well, when no basewhen no base--level algorithmlevel algorithm
works well to the given data set !!works well to the given data set !!

-> It is time to de-compose base-level algorithms and
re-construct a proper algorithm to the given data set.
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De-composition&
Organization

Search &
Composition+

WrapperWrapper
ForwardForward

GeneGene
tictic

CFSCFS
ReliefRelief

Analysis of FSAs

Basic Idea of our Constructive Meta-
Level Feature Selection
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Analysis of FSAs Automatic Composition 
of FSAs

De-composition&
Organization

Search &
Composition+

Basic Idea of our Constructive Meta-
Level Feature Selection

Organizing feature selection methods,
treated objects and control structures
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Issues to implement meta-level feature 
selection method

How to deHow to de--compose FSAs into methods (compose FSAs into methods (FSMsFSMs))
We de-composed FSAs in Weka Attribute Selection package 
in to four generic methods, according to their nature

How to restrict combinations between methods to reHow to restrict combinations between methods to re--
construct FSAsconstruct FSAs

We have described restrictions on input, output, reference, pre-
method and post-method for each method. Then they have been 
organized as method hierarchy and data type hierarchy.

How to reHow to re--costructcostruct a proper FSAs to given dataseta proper FSAs to given dataset
We have developed a system to search for a proper FSA to a 
given dataset with the method repository
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Analysis of FSAs

Analyzing FSAs implemented in Weka
Identified the four generic methods based 
on ‘search problem’

Determining initial set
Evaluating attribute subset
Testing a search termination of attribute subset
Attribute subset search operation

Described restrictions of connections 
between two of the generic methods
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Identifying FSAs Control Structures

Evaluating Evaluating 
attributeattribute
subsetsubset

Determining Determining 
initial setinitial set

Attribute subsetAttribute subset
Search operationSearch operation

TestingTesting
a search terminationa search termination
of attribute subsetof attribute subset

start end

Determining Determining 
initial setinitial set

CS: Type I

start

CS: Type II

end

Type I: filter approach algorithms
Type II: wrapper and hybrid algorithms
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Feature Selection Method Repository
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Data Type Hierarchy
Organization of input/output/reference data typesOrganization of input/output/reference data types

for feature selection mefor feature selection methods thods 

attribute-set

dataset

Whole (given) attribute set
Attribute subset
Null attribute set

training dataset

test dataset

Objects

validation dataset

attribute
Nominal attribute
Numerical attribute
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CMFSCMFS

System overview of CMFS:
a Constructive Meta-level Feature Selection tool

Method Repository
Data Type Hierarchy
Control Structures

Compile

Go & Test

Construction

Instantiation

Go to or beyond 
the goal accuracy?

No Yes

Dataset, Limit #Refinement

A proper FSA
Refinement

User
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Experiment with UCI Common Datasets

Input: 32 UCI common datasets
Comparison:

No feature selection
Seed initial subset determination + Forward selection
Genetic Search [Vafaie 92]
FSA constructed by CMFS

Process:
1. Select attribute subset with each FSA on each whole 

training dataset
2. Carry out 10-fold CV with the datasets which have each 

attribute subset
3. Compare averaged predictive accuracies among the 

FSAs
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CMFS setting

CMFS has output just one specification of the 
composed FSA to each data set.

CMFS has searched 292 FSAs for the best one, 
executing up to one hundred FSAs.

Search method in ‘Refinement’ is based on GA
each generation has 10 individuals
evaluating each individuals with alternative predictive 
accuracy
roulette selection with elite preservation (parents size = 6)
crossover on randomized single point
mutation at least one child (mutation probability=0.02)
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CMFSCMFS

System overview of CMFS:
a Constructive Meta-level Feature Selection tool

Method Repository
Data Type Hierarchy
Control Structures

Compile

Go & Test

Construction

Instantiation

Go to or beyond 
the goal accuracy?

No Yes

Dataset, Limit #Refinement

A proper FSA
Refinement with GA

User
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Choosing a best FSA with GA refinement

t Generation

Selection

Parents

Crossover and
Mutation

t+1 Generation

Children

El
ite

 p
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se
rv

at
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n 
(n

=1
)

Whole 
training data

Training set
(with whole
feature set)

Validation set
(with whole
feature set)

Execution of a FSA
Filtering to the selected

feature subset

Training set
(with feature subset)

Validation set
(with feature subset)

Execution of J4.8

Averaged 
predictive accuracy

Evaluation score
for each ind.

To get evaluation score
with execution

Repeating n-times
for CV
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Evaluation on 10CV accuracies of CMFS and three 
other feature subsets 

85.7684.0884.8684.41Average
17597#Best Acc.

Genetic CMFSSeed methodWhole Att. set

Accuracy(%)=
(#correctly classified/
#total test instances)

*100
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CMFS has significantly (p<0.05)
outperformed compared to other
high performed FSAs.
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New FSA, combining the FSMs
for heart-statlog

Note: This FSA is automatically constructed from the FSM 
repository with CMFS.
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Conclusion & Future Work
CMFS has been implemented as a tool for “Constructive 
Meta-Level Feature Selection” scheme based on method 
repositories.
FSAs constructed by CMFS have outperformed 
significantly, comparing with two high-performance FSAs.
CMFS can construct proper FSAs to almost given 
datasets automatically.

Feature work
Extending FSM repository
Combining constructive meta-learning scheme to construct a 
proper ‘mining application’ for a given dataset
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