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Feature Selection Algorithms

Filter Approach

Fast execution with low performance

Wrapper Approach
Slow execution with high performance

Kind of search problem

However, to determine starting subset is not considered
as a component of these algorithms

Problem

How to choose the proper feature selection algorithm
(FSA) to a given dataset, according to a user
requirement
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Overview of meta-learning scheme

Data Set Learning Algorithms

Meta-learning
scheme

Meta-Learning

E et Meta Knowledge

A Better result to the given data set
than its done
by each base-level learning algorithm
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Selective meta-learning scheme and
our motivation

Integrating base-level classifiers, which are learned
with different training data sets generating by
“Bootstrap Sampling” (bagging)
weighting ill-classified instances (boosting)

Integrating base-level classifiers, which are learned
from different learning algorithms

simple voting (voting)
constructing meta-level classifier with a meta-level
training data set (stacking, cascading)

They don’t work well, when no base-level algorithm
works well to the given data set !!

-> |t Is time to de-compose base-level algorithms and
re-construct a proper algorithm to the given data set.
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Basic ldea of our Constructive Meta-
Level Feature Selection

De-composition& Y Search &
Organization Composition

rapper
F

o

Analysis of FSAs
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Basic ldea of our Constructive Meta-
Level Feature Selection

De-composition& I Search &
Organization Composition

3-l VAR %

AnaIyS|s of FSAS Automatlc Composition
of FSAS

Organizing feature selection methods,
. treated objects and control structures ;



Issues to implement meta-level feature
selection method

How to de-compose FSAs into methods (FSMs)
We de-composed FSAs in Weka Attribute Selection package
In to four generic methods, according to their nature

How to restrict combinations between methods to re-
construct FSASs

We have described restrictions on input, output, reference, pre-
method and post-method for each method. Then they have been
organized as method hierarchy and data type hierarchy.

How to re-costruct a proper FSAs to given dataset

We have developed a system to search for a proper FSA to a
given dataset with the method repository
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Analysis of FSAs

Analyzing FSAs implemented in Weka

|dentified the four generic methods based
on ‘search problem’
Determining initial set
Evaluating attribute subset
Testing a search termination of attribute subset
Attribute subset search operation

Described restrictions of connections
between two of the generic methods
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ldentifying FSAs Control Structures

CS: Type |
start—»D?t?r.mining —end
Initial set
CS: Type Il _ Testin
start*D?:]?trigigier;g E\;?tlr?sltjltneg -~ a search terrr?ination ~end

subset of attribute subset
| Attribute subset
<

Search operation

Type [: filter approach algorithms
Type Il: wrapper and hybrid algorithms
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Feature Selection Method Repository

whole set
unsupervised < null set
random set RELIEF
determining, Information Gain
initial set ] ) (3ain Ratio
supervised with target attribute OneR
Seed

Seed with FA elimination

without target attribute eliminating with Factor Analysis

with learning Wrapper subset evaluation

evaluating scheme
attribute subset ) ) CFS subset evaluation
without learning
Attrlb_ute scheme Consistency subset evaluation
Selection
Method
. with number of percentage
testing a search ) geheration
o search operation
temination of backtrack
attribute subsets iy evaluation = error SD
result not improved
) forward search Best First search
sequencial
direction backwrard search Greedy search
attribute subset

) bi-directional search
search operation

Random Search
andom <
direction Genetic Search
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Data Type Hierarchy

Organization of input/output/reference data types
for feature selection methods

dataset training dataset
\validation dataset
test dataset
Whole (given) attribute set
Objects attribute-set Attribute subset

Null attribute set

Nominal attribute
attribute — Numerical attribute
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System overview of CMFES:

a Constructive Meta-level Feature Selection tool

Dataset, Limit #Refinement

CMES Method Repository
N\ e Data Type Hierarchy
/ Construction } Control Structures
Instantiation \\/ ; _ N
Compile
Go & Test
\ Refinement \_ /
A proper FSA
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Experiment with UCI Common Datasets

Input: 32 UCI common datasets

Comparison:
No feature selection
Seed initial subset determination + Forward selection
Genetic Search [Vafaie 92]
FSA constructed by CMFS

Process:

Select attribute subset with each FSA on each whole
training dataset

Carry out 10-fold CV with the datasets which have each
attribute subset

Compare averaged predictive accuracies among the
FSAS
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CMES setting

CMES has output just one specification of the
composed FSA to each data set.

CMFS has searched 292 FSAs for the best one,
executing up to one hundred FSAs.

Search method in ‘Refinement’ is based on GA
each generation has 10 individuals

evaluating each individuals with alternative predictive
accuracy

roulette selection with elite preservation (parents size = 6)
crossover on randomized single point
mutation at least one child (mutation probability=0.02)
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System overview of CMFES:

a Constructive Meta-level Feature Selection tool

Dataset, Limit #Refinement

CMFES Method Repository
N\ e Data Type Hierarchy
/ Construction } Control Structures
Instantiation \\/ ; _ N\
Compile
Go & Test
\ Refinement with GA \_ /
A proper FSA
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Choosing a best FSA with GA refinement

t Generation

\ 4
’T'IP Selection
=
= (CParents >
©
re
> Crossover and
(ab] .
% Mutation
S
2| CChildren>
L

t+1 Generation

H.Abe & T. Yamaguchi

To get evaluation score
with execution

Tramlng set
(with whole
feature set)

/
Valldatlon 56
(Wlth Who

Execution of a FSA

\ 4

Training set
ith feature subset)

Filtering to the selected
feature subset

Evaluation scor
for each ind.

PAKDD2006

v

V@t

(with|feature sulbset)

A 4

Execution of J4.8 [

v

Averaged
predictive accuracy

Repeating n-times
for CV

21



Evaluation on 10CV accuracies of CMFES and three
other feature subsets

annal
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New FSA, combining the FSMs

for heart-statlog

rlnput Whole feature set F, training data set Tr
Qutput: Feature subset for the training data set Fsub
Prameters: number of backtracks=5

begin:
Feature set f;
f = determining_initial set with FA+Seed(F);
int i=0;
double[] evaluations;
while(1){
evaluations[] = feature_subset evaluation_with_CFS(f);

(f,)) = backward_elimination(evaluations,f);
if(number_of backtracks(i,5)==true}{ break; }

}

return f;
\_end: .

Note: This FSA Is automatically constructed from the FSM
repository with CMFS.
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Conclusion & Future Work

CMFS has been implemented as a tool for “Constructive
Meta-Level Feature Selection” scheme based on method
repositories.

FSAs constructed by CMFS have outperformed

significantly, comparing with two high-performance FSAs.

CMFS can construct proper FSAs to almost given
datasets automatically.

Feature work
Extending FSM repository
Combining constructive meta-learning scheme to construct a
proper ‘mining application’ for a given dataset
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