Constructive Meta-Level Feature Selection Method based on Method Repositories

Hidenao Abe
Shimane University, JAPAN
abe@med.shimane-u.ac.jp

Takahira Yamaguchi
Keio University, JAPAN
yamaguti@ae.keio.ac.jp
Contents

- Background
- Constructive meta-learning based on method repositories
- Experiment with common data sets
- Conclusion
Feature Selection Algorithms

- Filter Approach
 - Fast execution with low performance

- Wrapper Approach
 - Slow execution with high performance
 - Kind of search problem
 - However, to determine starting subset is not considered as a component of these algorithms

- Problem
 - How to choose the proper feature selection algorithm (FSA) to a given dataset, according to a user requirement
Overview of meta-learning scheme

- Data Set
- Learning Algorithms
- Meta-learning scheme
- Meta-Learning Executor
- Meta Knowledge

A Better result to the given data set than its done by each base-level learning algorithm
Selective meta-learning scheme and our motivation

- Integrating base-level classifiers, which are learned with different training data sets generating by
 - “Bootstrap Sampling” (bagging)
 - weighting ill-classified instances (boosting)
- Integrating base-level classifiers, which are learned from different learning algorithms
 - simple voting (voting)
 - constructing meta-level classifier with a meta-level training data set (stacking, cascading)

They don’t work well, when no base-level algorithm works well to the given data set!!

-> It is time to de-compose base-level algorithms and re-construct a proper algorithm to the given data set.
Contents

- Background
- Constructive meta-learning based on method repositories
 - Basic idea of our constructive meta-level feature selection
 - An implementation of the constructive meta-level feature selection
- Experiment with common data sets
- Conclusion
Basic Idea of our Constructive Meta-Level Feature Selection

De-composition & Organization + Search & Composition

Wrapper Forward
CFS
Genetic Relief
Analysis of FSAs
Basic Idea of our Constructive Meta-Level Feature Selection

- De-composition & Organization
- Search & Composition

Analysis of FSAs

Automatic Composition of FSAs

Organizing feature selection methods, treated objects and control structures
Issues to implement meta-level feature selection method

- **How to de-compose FSAs into methods (FSMs)**
 - We de-composed FSAs in Weka Attribute Selection package into four generic methods, according to their nature.

- **How to restrict combinations between methods to re-construct FSAs**
 - We have described restrictions on input, output, reference, pre-method and post-method for each method. Then they have been organized as method hierarchy and data type hierarchy.

- **How to re-construct a proper FSAs to given dataset**
 - We have developed a system to search for a proper FSA to a given dataset with the method repository.
Contents

- Background
- Constructive meta-level feature selection based on method repositories
 - Basic idea of our constructive meta-level feature selection
 - An implementation of the constructive meta-level feature selection
- Experiment with common data sets
- Conclusion
Analysis of FSAs

- Analyzing FSAs implemented in Weka
- Identified the four generic methods based on ‘search problem’
 - Determining initial set
 - Evaluating attribute subset
 - Testing a search termination of attribute subset
 - Attribute subset search operation
- Described restrictions of connections between two of the generic methods
Identifying FSAs Control Structures

CS: Type I

start → Determining initial set → end

CS: Type II

start → Determining initial set → Evaluating attribute subset → Testing a search termination of attribute subset → end

Attribute subset
Search operation

Type I: filter approach algorithms
Type II: wrapper and hybrid algorithms
Feature Selection Method Repository

- Attribute Selection Method
 - determining initial set
 - unsupervised
 - whole set
 - null set
 - random set
 - supervised
 - with target attribute
 - without target attribute
 - RELIEF
 - Information Gain
 - Gain Ratio
 - OneR
 - Seed
 - Seed with FA elimination
 - eliminating with Factor Analysis
 - evaluating attribute subset
 - with learning scheme
 - Wrapper subset evaluation
 - without learning scheme
 - CFS subset evaluation
 - Consistency subset evaluation
 - testing a search termination of attribute subsets
 - with number of search operation
 - percentage generation
 - backtrack
 - error SD
 - not improved
 - with evaluation result
 - attribute subset search operation
 - sequential direction
 - forward search
 - backward search
 - bi-directional search
 - random direction
 - Random Search
 - Genetic Search
Data Type Hierarchy

Organization of input/output/reference data types for feature selection methods

Objects
 └ dataset
 │ training dataset
 │ validation dataset
 │ test dataset
 └ attribute-set
 │ Whole (given) attribute set
 │ Attribute subset
 │ Null attribute set
 └ attribute
 │ Nominal attribute
 │ Numerical attribute
System overview of CMFS:
a Constructive Meta-level Feature Selection tool

CMFS

Dataset, Limit #Refinement

Method Repository
Data Type Hierarchy
Control Structures

User

Construction

Instantiation

Go to or beyond
the goal accuracy?

Refinement

No

Yes

Compile

Go & Test

A proper FSA

H. Abe & T. Yamaguchi

PAKDD2006
Contents

- Introduction
- Constructive meta-level feature selection based on method repositories
- Experiments: Accuracy comparison using UCI common data sets
- Conclusion
Experiment with UCI Common Datasets

Input: 32 UCI common datasets

Comparison:
- No feature selection
- Seed initial subset determination + Forward selection
- Genetic Search [Vafaie 92]
- FSA constructed by CMFS

Process:
1. Select attribute subset with each FSA on each whole training dataset
2. Carry out 10-fold CV with the datasets which have each attribute subset
3. Compare averaged predictive accuracies among the FSAs
CMFS setting

- CMFS has output just one specification of the composed FSA to each data set.
 - CMFS has searched 292 FSAs for the best one, executing up to one hundred FSAs.

- Search method in ‘Refinement’ is based on GA
 - each generation has 10 individuals
 - evaluating each individuals with alternative predictive accuracy
 - roulette selection with elite preservation (parents size = 6)
 - crossover on randomized single point
 - mutation at least one child (mutation probability=0.02)
System overview of CMFS:
a Constructive Meta-level Feature Selection tool

CMFS

Construction → Instantiation

Go to or beyond the goal accuracy? Yes

No

Refinement with GA

Method Repository
Data Type Hierarchy
Control Structures

Compile

Go & Test

Dataset, Limit #Refinement

A proper FSA
Choosing a best FSA with GA refinement

t Generation

Selection

Parents

Crossover and Mutation

Children

$t+1$ Generation

To get evaluation score with execution

Whole training data

Training set (with whole feature set)

Validation set (with whole feature set)

Filtering to the selected feature subset

Training set (with feature subset)

Validation set (with feature subset)

Execution of a FSA

Execution of J4.8

Averaged predictive accuracy

Evaluation score for each ind.

Repeating n-times for CV

Elite preservation (n=1)
Evaluation on 10CV accuracies of CMFS and three other feature subsets

Accuracy(%) = \(\frac{\text{#correctly classified}}{\text{#total test instances}} \times 100\)

CMFS has significantly \((p < 0.05)\) outperformed compared to other high performed FSAs.

<table>
<thead>
<tr>
<th></th>
<th>Whole Att. set</th>
<th>Seed method</th>
<th>Genetic</th>
<th>CMFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>84.41</td>
<td>84.86</td>
<td>84.08</td>
<td>85.76</td>
</tr>
<tr>
<td>#Best Acc.</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>
New FSA, combining the FSMs for heart-statlog

```
Input: Whole feature set $F$, training data set $T_r$
Output: Feature subset for the training data set $F_{sub}$
Parameters: number of backtracks=$5$

begin:
  Feature set $f$;
  $f = \text{determining\_initial\_set\_with\_FA+Seed}(F)$;
  int $i = 0$;
  double[] evaluations;
  while(1){
    evaluations[] = \text{feature\_subset\_evaluation\_with\_CFS}(f);
    ($f, i$) = \text{backward\_elimination}(evaluations, $f$);
    if(number of backtracks($i, 5$) == true){ break; }
  }
return $f$;
end:
```

Note: This FSA is automatically constructed from the FSM repository with CMFS.
Contents

- Introduction
- Constructive meta-level feature selection based on method repositories
- Case Study with common data sets
- Conclusion
Conclusion & Future Work

- CMFS has been implemented as a tool for “Constructive Meta-Level Feature Selection” scheme based on method repositories.
- FSAs constructed by CMFS have outperformed significantly, comparing with two high-performance FSAs.
- CMFS can construct proper FSAs to almost given datasets automatically.

Feature work
- Extending FSM repository
- Combining constructive meta-learning scheme to construct a proper ‘mining application’ for a given dataset
Acknowledgement

This research is supported by the Grant-in-Aid for Young Scientists(B), 17700152, by Ministry of Education, Science and Culture for Japan