a Rule Evaluation Support Method Based on Objective Indices

<u>Hidenao Abe¹</u>, S. Tsumoto¹, M. Ohsaki², T. Yamaguchi³

Dept. of Medical Informatics, Shimane University, School of Medicine, Japan¹⁾

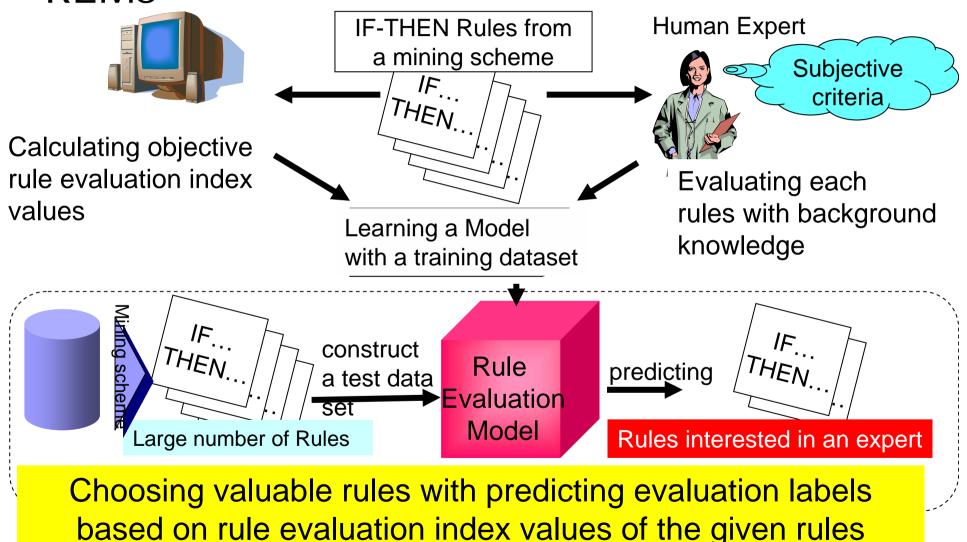
Faculty of Engineering, Doshisha University, Japan²⁾

Faculty of Science and Technology, Keio University, Japan³⁾

- Background and Research I ssues
- Rule Evaluation Support Method based on Objective Rule Evaluation indices
- Comparisons of Leaning Algorithms for Rule Evaluation Model Construction
- Conclusion

Research Background & Related Work

- It is difficult for human experts to evaluate large number of rules completely
- Many efforts have done to select rules with single objective index such as recall, precision, and so forth.
- At least 40 objective interestingness measures are developed and investigated to express a human evaluation criterion.
- Ohsaki et al. investigated the relationship between each index and criterion of an expert. However, no single objective index can express the human criterion exactly. [Ohsaki04].
- Applicable domain of these interestingness measures have been never generalized.


Research I ssues

- A novel rule evaluation support method with rule evaluation models (REMs).
 - The system obtains a dataset to combine multiple objective indices and evaluations from a human expert.
- Detailed issues of our rule evaluation support method
 - To construct more accurate REMs to support human experts more exactly
 - □ To construct a valid REM with smaller training dataset
 - To construct a reasonable REMs to given human evaluation

Background

- Rule Evaluation Support Method based on Objective Rule Evaluation indices
- Comparisons of Leaning Algorithms for Rule Evaluation Model Construction
- Conclusion

Overview of the rule evaluation support with REMs

Background

- Rule Evaluation Support Method based on Objective Rule Evaluation indices
- Comparisons of Leaning Algorithms for Rule Evaluation Model Construction
- Conclusion

Comparisons of learning algorithms

- Comparison on an actual datamining result
 - To evaluate the availability on solid evaluations from a domain expert
- Comparison on rule sets of benchmark datasets with artificial class distributions
 - To evaluate the availability on evaluations without any particular human criterion
- Evaluation viewpoints for these comparisons:
 - Accuracies to the whole dataset and Leave-One-Out validation, and their recalls and precisions of each class label
 - Estimating minimum size of training subset to construct valid REMs with learning curves
 - □ Looking at elements of REMs from an actual data mining result

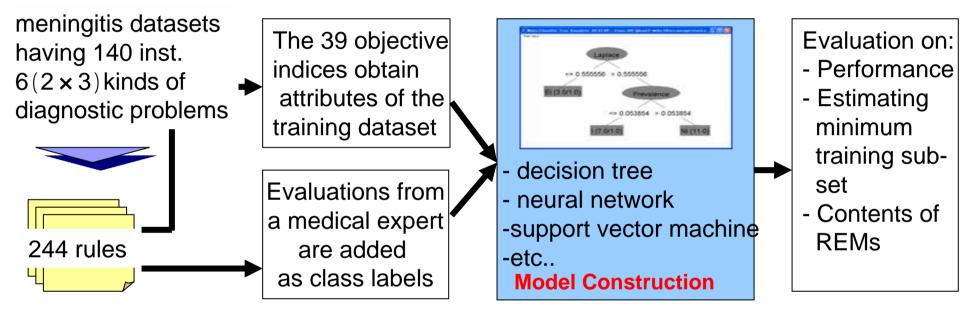
Objective Rule Evaluation indices

calculated on a validation dataset for each classification rule

The 39 objective indices [Ohsaki 04]

- Based on probability (26 indices)
 - Coverage, Prevalence, Precision, Recall, Support, Accuracy, Specificity, Lift, Leverage, Added Value, Relative Risk, Jaccard, Certainty Factor, Odds ratio, Yule's Q, Yule's Y, Kappa, Koelesgen's Interestingness, Brin's Interestingness, Brin's Conviction, GOI, Credibility, KSI, Laplace Correction, Collective Strength
- Based on test statistics (3 indices)
 - □ Chi-Square(with only True/Positive, with a whole confusion matrix), Gini Gain
- Based on information theory (6 indices)
 - □ Mutual Information, J-Measure, YLI1, YLI2, YZI, K-Measure
- Based on number of instances (3 indices)
 - □ coefficient, PSI, Cosine Similarity
- Based on similarity between rules on a validation dataset (2 indices)
 GBI, Peculiarity

Learning algorithms for comparisons


- <u>Decision Tree</u>: J4.8 (an Java implementation of C4.5)
- Neural Network: BPNN (with back-propagation)
 - □ Parameters of BP: learning rate=0.3, momentum= 0.2
 - □ Each unit corresponds to each class label in output layer
- Classification Via Linear Regression: CLR
 - Linear regression expressions: "1-the other" for each class label
 - explanatory variable selection: greedy search with AIC
- SVM: Sequential Minimal Optimization [Platt98]
 - SVM for multiple class: learning "1-the other" expressions for each class label
 - Kernel function setting: polynomial kernel

OneR

- 1. sorting with single objective index
- 2. setting thresholds based on class labels
- 3. constructs a rule set with the objective index

2006/7/25

The Flow of the comparison with the meningitis datamining result [Hatazawa 00]

Sample of the data set

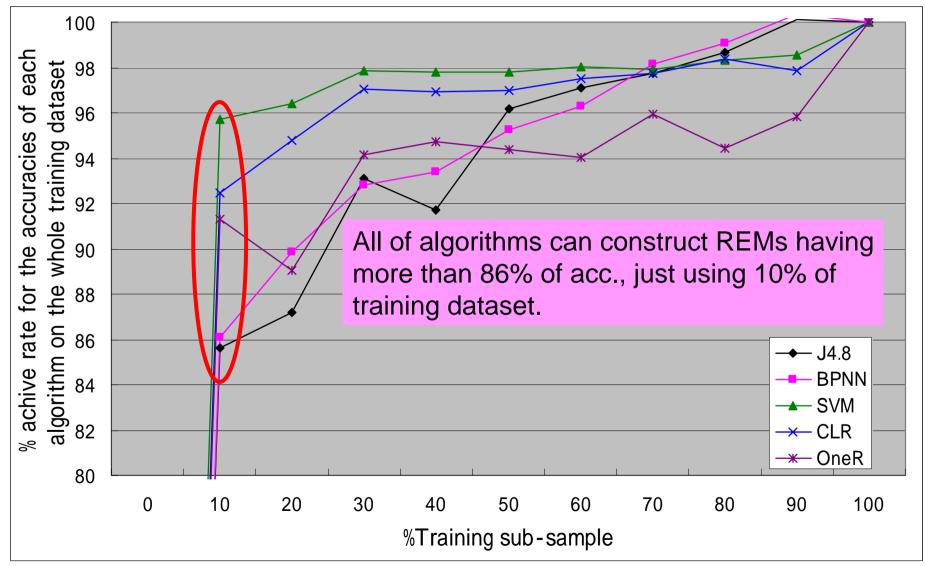
ruleID	Accuracy	Added_Value	• • •	YulesQ	YulesY	HumanExpert	
Rule1	0.81	0.41	• • •	0.73	0.44	NI	
Rule10	0.81	0.43		0.75	0.45	NI	
Rule11	0.85	0.46	• • •	0.79	0.49	l	
Rule12	0.84	0.56		0.87	0.58	l	
Rule13	0.94	0.44		0.88	0.59	l	
Rule14	0.81	0.43		0.75	0.45	NI	
	ruleID Rule1 Rule10 Rule11 Rule12 Rule13	ruleIDAccuracyRule10.81Rule100.81Rule110.85Rule120.84Rule130.94	ruleIDAccuracyAdded_ValueRule10.810.41Rule100.810.43Rule110.850.46Rule120.840.56Rule130.940.44	ruleID Accuracy Added_Value · · · Rule1 0.81 0.41 · · · Rule10 0.81 0.43 · · · Rule11 0.85 0.46 · · · Rule12 0.84 0.56 · · · Rule13 0.94 0.44 · · ·	ruleIDAccuracyAdded_Value· · ·YulesQRule10.810.41· · ·0.73Rule100.810.43· · ·0.75Rule110.850.46· · ·0.79Rule120.840.56· · ·0.87Rule130.940.44· · ·0.88	ruleIDAccuracyAdded_Value· · · ·YulesQYulesYRule10.810.41· · · 0.730.44Rule100.810.43· · · 0.750.45Rule110.850.46· · · 0.790.49Rule120.840.56· · · 0.870.58Rule130.940.44· · · 0.880.59	

—— 39 objective rule evaluation indices ——

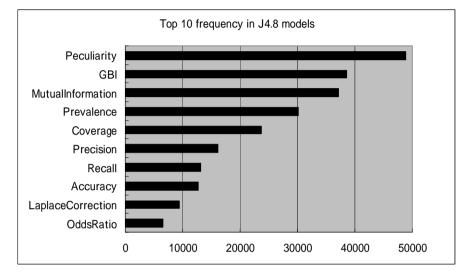
Kougn Sei and Knowledge Technology ∠000 (KSK12006)

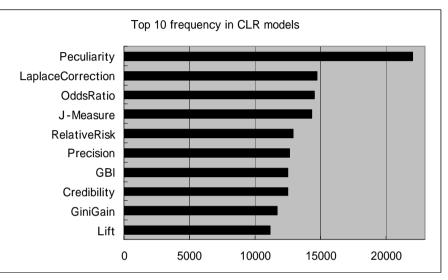
Performance Comparison of the five algorithms

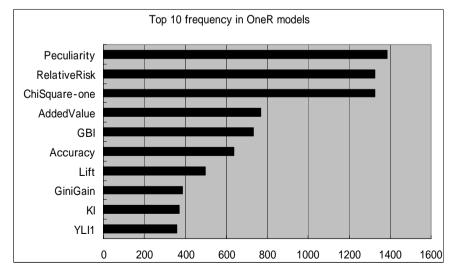
(All of rules = 244, 'I'=48(19.7%), 'NI'=187(76.6%), 'NU'=9(3.7%))


•	Evaluation on the Whole Training Dataset							
Learning		Recall			Precision			
Algorithms	Acc.		NI	NU		NI	NU	
J4.8	85.7	41.7	97.9	66.7	80.0	86.3	85.7	
BPNN	86.9	81.3	89.8	55.6	65.0	94.9	71.4	
SVM	81.6	35.4	97.3	0.0	68.0	83.5	0.0	
CLR	82.8	41.7	97.3	0.0	71.4	84.3	0.0	
OneR	82.0	56.3	92.5	0.0	57.4	87.8	0.0	
Learning	Evaluation with Leave - One-Out(LOO)							
Algorithms	Acc.	Recall			Precision			
Aigontinins	ACC.		NI	NU		NI	NU	
J4.8	79.1	29.2	95.7	0.0	63.6	82.5	0.0	
BPNN	77.5	39.6	90.9	0.0	50.0	85.9	0.0	
SVM	81.6	35.4	97.3	0.0	68.0	83.5	0.0	
CLR	80.3	35.4	95.7	0.0	60.7	82.9	0.0	
OneR	75.8	27.1	92.0	0.0	37.1	82.3	0.0	

1. J4.8 and BPNN achieve higher than 85.7% of acc. with more than 77.5% reliability. (BPNN tend to be over fitting, looking at it's LOO acc., recalls and precisions)


2. To predict very minor class 'NU', a proper learning algorithm will be needed.

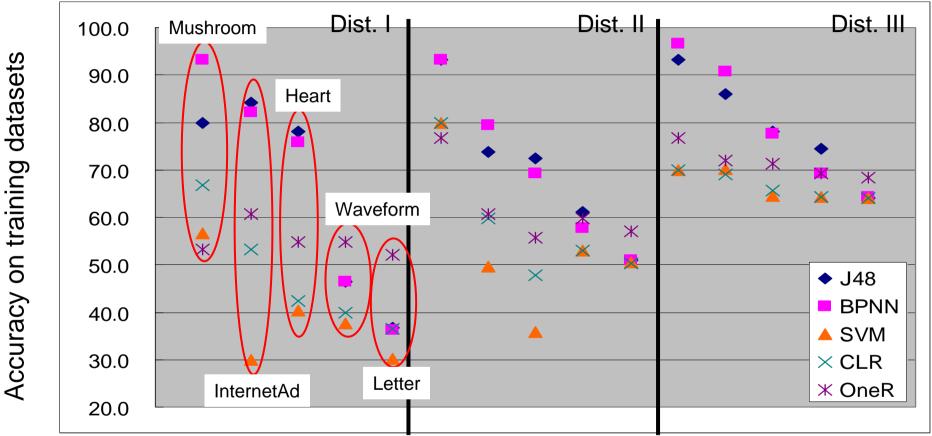

Leaning curves on achieve rates


(achieve rate = (acc. of each sub-sample / acc. of whole sample) *100)

Contents of Rule Evaluation Models (Statistics of 10,000 bootstrap iterations)

• These models include not only indices which express correctness of rules, but also other kinds of indices such as Peculiality and GBI.

Datasets from rule sets learned with the five UCI benchmark data


(To make sure the availability of our method without any human criteria)

	#Mined	#				
	Rules	L1	L2	L3	%Def. class	
Distribution I		(0.30)	(0.35)	(0.35)		
Mushroom	30	8	14	8	46.7	
InternetAd	107	26	39	42	39.3	
Heart	318	97	128	93	40.3	
Waveform	518	146	192	180	37.1	
Letter	6340	1908	2163	2269	35.8	
Distribution II		(0.30)	(0.50)	(0.20)		
Mushroom	30	11	16	3	53.3	
InternetAd	107	30	53	24	49.5	
Heart	318	99	140	79	44.0	
Waveform	824	240	436	148	52.9	
Letter	6340	1890	3198	1252	50.4	
Distribution III		(0.30)	(0.65)	(0.05)		
Mushroom	30	7	21	2	70.0	
InternetAd	107	24	79	9	73.8	
Heart	318	98	205	15	64.5	
Waveform	824	246	529	49	64.2	
Letter	6340	1947	4062	331	64.1	

*All of rule sets are obtained by bagged PART with Weka [Witten 00] 2006/7/25 Rough Set and Knowledge Technology 2006 (RSKT2006)

Performances of REMs on the training datasets

with three kinds of class distributions

•Performances of algorithms are suffered from probabilistic class distribution especially in larger datasets.

•Hyper-plain type learner (SVM and CLR) could not work well, because of the probabilistic class distributions.

Estimation of minimum training subset to

construct valid REMs (from learning curve analysis)

	J48	BPNN	SVM	CLR	OneR
Distribution I					
Mushroom	8	8	12	18	14
InternetAd	14	14	-	30	14
Heart	42	31	66	114	98
Waveform	60	52	46	355	152
Letter	189	217	_	955	305
Distribution II					
Mushroom	6	4	4	6	12
InternetAd	24	24	52	42	70
Heart	52	40	-	104	92
Waveform	251	355	763	-	533
Letter	897	>1000	451	_	>1000
Distribution III					
Mushroom	22	14	22	28	22
InternetAd	80	66			
Heart	114	94	142	318	182
Waveform	329	425	191		601
Letter	>1000	>1000	998	>1000	>1000

 In Dist. I and II, almost learner succeeded in learning valid REMs with less than 20% of each data set.

•It is more difficult to construct valid REMs with smaller training subset on 'Distribution III', which has unbalanced class distribution.

-> If we construct REMs without particular human criterion, we should prepare small (<100) dataset with balanced class distribution.

Background

- Rule Evaluation Support Method based on Objective Rule Evaluation indices
- Comparisons of Leaning Algorithms for Rule Evaluation Model Construction

Conclusion

Conclusion

Summary

- Comparing learning algorithms to construct rule evaluation models for supporting a post-processing of data mining exactly
 - Our method can construct valid rule evaluation models with the 39 objective rule evaluation indices at least the five learning algorithms.
 - The algorithms have been able to construct valid rule evaluation models with 10% of training subset with evaluations based on solid expert's criterion.

Future works

- □ Introducing algorithm selection
 - attribute construction and selection algorithm selection
 - model learning algorithm selection
- Applying this method to other data from other domains

2006/7/25

Acknowledgement

This research is supported by the Grant-in-Aid for Young Scientists(B), 17700152, by Ministry of Education, Science and Culture for Japan