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Background

It is difficult for human experts to evaluate large number of ruIt is difficult for human experts to evaluate large number of rules completely!!les completely!!

- Rule Selection
- Verification
- Evaluation
etc…

- Decision Tree Learning
- IF-THEN Rule Induction
- Regression models etc…

Large Dataset with hundreds att.
and thousands of inst. including noises

IF …
THEN ...

IF …
THEN ...

IF …
THEN ... Many thousands

of IF-THEN Rules
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Related Work
Many efforts have done to select rules with 
single objective index such as recall, precision, 
and so forth.
At least 40 objective interestingness 
measures are developed and investigated to 
express a human evaluation criterion.

• Ohsaki et al. investigated the relationship between each index
and criterion of an expert. However, no single objective index
can express the human criterion exactly. [Ohsaki04].

• Applicable  domain of these interestingness measures have  
been never generalized.
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Research Issues
A novel rule evaluation support method with rule 
evaluation models (REMs).

The system obtains a dataset to combine multiple 
objective indices and evaluations from a human expert.

Detailed issues of our rule evaluation support 
method

To construct more accurate REMs to support human 
experts more exactly
To construct a valid REM with smaller training dataset
To construct a reasonable REMs to given human 
evaluation
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Overview of the rule evaluation support with 
REMs
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Rules interested in an expert

Choosing valuable rules with predicting evaluation labels 
based on rule evaluation index values of the given rules

Calculating objective
rule evaluation index
values
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Learning a Model
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Selective meta-learning scheme 
Integrating base-level classifiers, which 
are learned with different training data 
sets generating by

“Bootstrap Sampling” (bagging)
weighting ill-classified instances (boosting)

Integrating base-level classifiers, which 
are learned from different learning 
algorithms

simple voting (voting)
constructing meta-level classifier with a 
meta-level training data set (stacking, 
cascading)
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CSCS
AQ15AQ15

Analysis of two or more
learning algorithms

Basic Idea of our
Constructive Meta-Learning

De-composition&
Organization

Search &
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Analysis of two or more 
learning algorithms

Automatic Composition 
of learning algorithms

De-composition&
Organization

Search &
Composition+

Basic Idea of our
Constructive Meta-Learning

Organizing learning methods,
treated objects and control structures
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CAMLET: A Constructive Meta-Learning 
Tool

Implemented Method Repository

Input:
Dataset
Goal Accuracy

Output:
Learning Algorithm

U
ser Re-constructing learning algorithms
to the given dataset with search

CAMLET

A proper learning algorithms to a given dataset
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Comparisons of learning algorithms

Comparison on two actual datamining result
To evaluate the availability on solid evaluations from a domain 
expert
To evaluate the flexibility for changes of domain expert’s 
criteria

Comparison on rule sets of benchmark datasets with 
artificial class distributions

To evaluate the availability on evaluations without any 
particular human criterion

Evaluation viewpoints for these comparisons:
Accuracies to the whole dataset and Leave-One-Out validation, 
and their recalls and precisions of each class label
Estimating minimum size of training subset to construct valid 
REMs with learning curves
Looking at elements of REMs from an actual data mining result
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Objective Rule Evaluation indices
calculated on a validation dataset for each classification rule

Based on probability (26 indices)
Coverage, Prevalence, Precision, Recall, Support, Accuracy, Specificity, Lift, 
Leverage, Added Value, Relative Risk, Jaccard, Certainty Factor, Odds ratio, 
Yule’s Q, Yule’s Y, Kappa, Koelesgen’s Interestingness, Brin’s
Interestingness,Brin’s Conviction, GOI, Credibility, KSI, Laplace Correction, 
Collective Strength

Based on test statistics (3 indices)
Chi-Square( with only True/Positive, with a whole confusion matrix）, Gini Gain

Based on information theory (6 indices)
Mutual Information, J-Measure, YLI1, YLI2, YZI, K-Measure

Based on number of instances (3 indices)
Φ coefficient, PSI , Cosine Similarity

Based on similarity between rules on a validation dataset (2 indices)
GBI, Peculiarity

The 39 objective indices [Ohsaki 04]
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Learning algorithms for comparisons
Decision TreeDecision Tree: J4.8 
Neural NetworkNeural Network: BPNN (with back-propagation)
Classification Via Linear RegressionClassification Via Linear Regression: CLR
SVMSVM: Sequential Minimal Optimization [Platt98]
OneR OneR 

Bagged J4.8Bagged J4.8
Boosted J4.8Boosted J4.8
StackingStacking

Base-level learning algorithms are all of the above learning 
algorithms. 
Meta-learner is J4.8.

Learning Algorithms constructed by CAMLETLearning Algorithms constructed by CAMLET
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ruleset

The Flow of the comparison with the 
meningitis datamining result [Hatazawa 00]

The 39 objective 
indices obtain
attributes of the 
training dataset

- decision tree
- neural network
-support vector machine
-etc..

Model Construction

Evaluation on:
- Performance 
- Estimating
minimum
training sub-
set

- Contents of
REMs

Evaluations from
a medical expert

are added 
as class labels

dataset

ruleID Accuracy Added_Value ・・・ YulesQ YulesY HumanExpert
Rule1 0.81 0.41 ・・・ 0.73 0.44 NI
Rule10 0.81 0.43 ・・・ 0.75 0.45 NI
Rule11 0.85 0.46 ・・・ 0.79 0.49 I
Rule12 0.84 0.56 ・・・ 0.87 0.58 I
Rule13 0.94 0.44 ・・・ 0.88 0.59 I
Rule14 0.81 0.43 ・・・ 0.75 0.45 NI

39 objective rule evaluation indices

dataset

ruleset

meningitis datasets
having 140 inst.
6（2×3）kinds of
diagnostic problems

244 rules

Sample of the data set

Learning Algorithm
Selection
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The Learning Algorithm constructed by 
CAMLET 

Search Settings:
- Method: GA refinement with continuous generation model
- Initial population: 4 - Method to select parents: tournament
- Number of refinement: 100 times

GeneratingGenerating
Training & Training & 

Validation setValidation set
With random splitWith random split

GeneratingGenerating
Decision TreeDecision Tree
With entropy+With entropy+

information ratioinformation ratio

Apportion ofApportion of
creditcredit

Renewing weightRenewing weight
of each instanceof each instance

SynthesisSynthesis
classifiersclassifiers

Deleting weakDeleting weak
classifiersclassifiers

Voting withVoting with
WeightsWeights

Iterated boosted C4.5 with reinforcement of classifiers from Classifier Systems
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I NI NU I NI NU

CAMLET 89.4 70.8 97.9 11.1 85.0 90.2 100.0

Stacking 81.1 37.5 96.3 0.0 72.0 87.0 0.0
Boosted J4.8 99.2 97.9 99.5 100.0 97.9 99.5 100.0
Bagged J4.8 87.3 62.5 97.9 0.0 81.1 88.4 0.0
J4.8 85.7 41.7 97.9 66.7 80.0 86.3 85.7
BPNN 86.9 81.3 89.8 55.6 65.0 94.9 71.4
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 82.8 41.7 97.3 0.0 71.4 84.3 0.0
OneR 82.0 56.3 92.5 0.0 57.4 87.8 0.0

I NI NU I NI NU

CAMLET 80.3 7.4 73.0 0.0 7.4 73.0 0.0

Stacking 81.1 37.5 96.3 0.0 72.0 87.0 0.0
Boosted J4.8 74.2 37.5 87.2 0.0 39.1 84.0 0.0
Bagged J4.8 77.9 31.3 93.6 0.0 50.0 81.8 0.0
J4.8 79.1 29.2 95.7 0.0 63.6 82.5 0.0
BPNN 77.5 39.6 90.9 0.0 50.0 85.9 0.0
SVM 81.6 35.4 97.3 0.0 68.0 83.5 0.0
CLR 80.3 35.4 95.7 0.0 60.7 82.9 0.0
OneR 75.8 27.1 92.0 0.0 37.1 82.3 0.0

Learning
Algorithms

Leave－One-Out(LOO)

Acc.
Recall Precision

Learning
Algorithms

Evaluation on the training dataset

Acc.
Recall Precision

Performance Comparison of the nine algorithms
(All of rules =244，’I’=48(19.7%), ‘NI’=187(76.6%), ‘NU’=9(3.7%))

1. Learning algorithm constructed by CAMLET have achieved higher accuracy with
higher reliability. 

2. To predict very minor class ‘NU’, a proper learning algorithm will be needed.
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Leaning curves on achieve rates
(achieve rate = (acc. of each sub-sample / acc. of whole sample) *100)
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All of algorithms can construct REMs having
more than 86% of acc., just using 10% of 
training dataset. 
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Leaning curves on achieve rates
(achieve rate = (acc. of each sub-sample / acc. of whole sample) *100)

Learning algorithm constructed by CAMLET
shows almost the same achieve rates compared
to Bagged J4.8 with higher accuracies than it.
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Contents of Rule Evaluation Models  
(Statistics of 10,000 bootstrap iterations)

Top 10 frequency in OneR models

0 200 400 600 800 1000 1200 1400 1600

YLI1

KI

GiniGain

Lift

Accuracy

GBI

AddedValue

ChiSquare-one

RelativeRisk

Peculiarity

Top 10 frequency in J4.8 models

0 10000 20000 30000 40000 50000
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MutualInformation
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Top 10 frequency in CLR models

0 5000 10000 15000 20000

Lift

GiniGain

Credibility

GBI

Precision

RelativeRisk

J-Measure

OddsRatio

LaplaceCorrection

Peculiarity

Top 10 frequency in CAMLET models

0 1000000 2000000 3000000 4000000 5000000

BC

Coverage

BI

LaplaceCorrection

Precision

OddsRatio

GOI

MutualInformation

GBI

Peculiarity

・These models include not only
indices which express 
correctness of rules, but
also other kinds of indices 
such as Peculiality and GBI. 
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Datasets from chronic hepatitis 
data mining results

EI I NI NU
GPT
Phase1(GPT1) 30 3 8 16 3 53.33
Phase2(GPT2) 21 2 6 12 1 57.14

IFN
First Time(IFN1) 26 4 7 11 7 42.31
Second Time(IFN2) 32 15 5 11 1 46.88

#Rules
Class Distribution

%Def class

GPT data mining results consists of two phases, which tried to predict
GPT patterns with combination of patterns of blood and urine test result.

IFN data mining processes did try to find out valuable rules about IFN 
therapy results.
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Learning algorithms constructed by 
CAMLET

original
classifier set

overall
control structure

final
eval. method

GPT1 C4.5 tree Bagging Best selection
GPT2 C4.5 tree CS+Boost+Iteration Weighted Voting
IFN1 C4.5 tree CS+Boost+Iteration Weighted Voting
IFN2 C4.5 tree CS+Boost+Iteration Weighted Voting

CS means including reinfoecement of classifier set from Classifiser Systems
Boost means including methods and control structure from Boosting

All of the learning algorithms based on C4.5 decision tree.
To GPT2, IFN1, and IFN2, CAMLET constructed almost the same
learning algorithms with method from CS and Boosting.

Search Settings:
- Method: GA refinement with continuous generation model
- Initial population: 4 - Method to select parents: tournament
- Number of refinement: 100 times
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Performance comparison
EI I NI NU EI I NI NU

GPT1
J4.8 96.7 100.0 88.9 100.0 100.0 66.7 100.0 100.0 100.0
BPNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SVM 56.7 0.0 100.0 68.2 14.3 0.0 12.5 93.8 33.3
CLR 63.3 0.0 66.7 62.5 0.0 0.0 50.0 93.8 0.0
OneR 60.0 0.0 66.7 59.3 0.0 0.0 25.0 100.0 0.0
BagJ4.8 93.3 75.0 87.5 100.0 100.0 100.0 87.5 93.8 100.0
BooJ4.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Stacking 70.0 0.0 62.5 72.7 0.0 0.0 62.5 100.0 0.0
CAMLET 73.3 0.0 50.0 87.5 100.0 0.0 75.0 87.5 66.7

GPT2
J4.8 90.5 66.7 85.7 100.0 0.0 100.0 100.0 91.7 0.0
BPNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SVM 95.2 100.0 100.0 92.3 100.0 50.0 100.0 100.0 100.0
CLR 85.7 50.0 100.0 85.7 0.0 50.0 83.3 100.0 0.0
OneR 85.7 0.0 75.0 92.3 0.0 0.0 100.0 100.0 0.0
BagJ4.8 90.5 100.0 75.0 100.0 0.0 100.0 100.0 91.7 0.0
BooJ4.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Stacking 61.9 66.7 0.0 100.0 0.0 100.0 0.0 91.7 0.0
CAMLET 81.0 0.0 75.0 84.6 0.0 0.0 100.0 91.7 0.0

INF1
J4.8 88.5 80.0 100.0 83.3 100.0 100.0 71.4 90.9 100.0
BPNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SVM 46.2 26.7 0.0 70.0 100.0 100.0 0.0 63.6 25.0
CLR 53.8 100.0 0.0 47.6 66.7 50.0 0.0 90.9 50.0
OneR 50.0 0.0 50.0 50.0 0.0 0.0 85.7 63.6 0.0
BagJ4.8 96.2 80.0 100.0 100.0 100.0 100.0 100.0 90.9 100.0
BooJ4.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Stacking 11.5 0.0 12.5 14.3 0.0 0.0 14.3 18.2 0.0
CAMLET 76.9 100.0 60.0 80.0 100.0 100.0 85.7 72.7 50.0

INF2
J4.8 90.6 88.2 100.0 90.9 0.0 100.0 80.0 90.9 0.0
BPNN 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SVM 56.3 72.7 0.0 45.0 100.0 53.3 0.0 81.8 100.0
CLR 65.6 63.2 100.0 60.0 0.0 80.0 60.0 54.5 0.0
OneR 68.8 62.5 0.0 87.5 0.0 100.0 0.0 63.6 0.0
BagJ4.8 90.6 88.2 100.0 90.9 0.0 100.0 80.0 90.9 0.0
BooJ4.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Stacking 40.6 46.2 0.0 33.3 0.0 80.0 0.0 9.1 0.0
CAMLET 90.6 83.3 100.0 100.0 100.0 100.0 100.0 72.7 100.0

Acc
Precision Recall

On the whole datasets:
EI I NI NU EI I NI NU

GPT1
J4.8 50.0 0.0 60.0 60.0 0.0 0.0 75.0 56.3 0.0
BPNN 30.0 0.0 12.5 50.0 0.0 0.0 12.5 50.0 0.0
SVM 46.7 0.0 0.0 65.0 11.1 0.0 0.0 81.3 33.3
CLR 40.0 0.0 14.3 50.0 0.0 0.0 12.5 68.8 0.0
OneR 43.3 0.0 25.0 55.6 0.0 0.0 37.5 62.5 0.0
BagJ4.8 33.3 0.0 12.5 50.0 0.0 0.0 12.5 56.3 0.0
BooJ4.8 43.3 0.0 42.9 62.5 0.0 0.0 37.5 62.5 0.0
Stacking 36.7 0.0 33.3 61.5 0.0 0.0 37.5 50.0 0.0
CAMLET 43.3 0.0 6.7 33.3 3.3 0.0 6.7 33.3 3.3

GPT2
J4.8 76.2 0.0 66.7 90.9 0.0 0.0 100.0 83.3 0.0
BPNN 66.7 0.0 83.3 81.8 0.0 0.0 83.3 75.0 0.0
SVM 81.0 0.0 100.0 91.7 25.0 0.0 83.3 91.7 100.0
CLR 76.2 0.0 83.3 84.6 0.0 0.0 83.3 91.7 0.0
OneR 81.0 0.0 66.7 91.7 0.0 0.0 100.0 91.7 0.0
BagJ4.8 76.2 0.0 66.7 90.9 0.0 0.0 100.0 83.3 0.0
BooJ4.8 76.2 0.0 66.7 100.0 0.0 0.0 100.0 83.3 0.0
Stacking 71.4 0.0 83.3 76.9 0.0 0.0 83.3 83.3 0.0
CAMLET 76.2 0.0 28.6 47.6 0.0 0.0 28.6 47.6 0.0

INF1
J4.8 19.2 37.5 0.0 20.0 0.0 75.0 0.0 18.2 0.0
BPNN 26.9 40.0 22.2 25.0 25.0 50.0 28.6 18.2 25.0
SVM 34.6 21.4 0.0 54.5 0.0 75.0 0.0 54.5 0.0
CLR 19.2 33.3 0.0 28.6 0.0 25.0 0.0 36.4 0.0
OneR 19.2 0.0 11.1 23.5 0.0 0.0 14.3 36.4 0.0
BagJ4.8 26.9 33.3 37.5 22.2 0.0 50.0 42.9 18.2 0.0
BooJ4.8 23.1 42.9 0.0 27.3 0.0 75.0 0.0 27.3 0.0
Stacking 23.1 0.0 33.3 28.6 0.0 0.0 57.1 18.2 0.0
CAMLET 30.8 11.5 0.0 19.2 0.0 11.5 0.0 19.2 0.0

INF2
J4.8 75.0 76.5 66.7 75.0 0.0 86.7 40.0 81.8 0.0
BPNN 37.5 50.0 28.6 22.2 0.0 53.3 40.0 18.2 0.0
SVM 31.3 36.4 0.0 28.6 0.0 26.7 0.0 54.5 0.0
CLR 34.4 41.2 20.0 30.0 0.0 46.7 20.0 27.3 0.0
OneR 68.8 60.0 0.0 100.0 0.0 100.0 0.0 63.6 0.0
BagJ4.8 71.9 70.0 100.0 72.7 0.0 93.3 20.0 72.2 0.0
BooJ4.8 71.9 76.5 100.0 70.0 0.0 86.7 60.0 63.6 0.0
Stacking 53.1 58.8 0.0 58.3 0.0 66.7 0.0 63.6 0.0
CAMLET 43.8 18.8 0.0 18.8 0.0 18.8 0.0 18.8 0.0

Acc
Precision Recall

Leave-One-Out:
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Estimating minimum training sub-
samples

J4.8 BPNN SVM CLR OneR BagJ4.8 BooJ4.8 Stacking CAMLET

GPT1 14 14 20 16 14 14 12 24 16

GPT2 6 5 5 16 11 6 6 11 8
IFN1 8 6 10 16 18 10 8 16 14
IFN2 6 8 8 16 16 8 6 12 8

The number of training sub-samples to construct valid rule evaluation model
are decreased on each second time data mining.

Learning algorithms constructed by CAMLET needs as same training
sub-samples as Bagged J4.8 and Boosted J4.8.
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Contents of learned rule evaluation 
models (Statistics of 10,000 bootstrap iterations)

Top 10 frequency in CAMLET model on GPT1

0 5000 10000 15000 20000
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Top10 frequency in CAMLET model on GPT2
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Top10 frequency in CAMLET model on IFN1
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Top10 frequency in CAMLET model on IFN2
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Comparing differences on each problem:
•Indices which are used in models are changed
•Variances of indices are decreased
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Datasets from rule sets learned with 
the eight UCI benchmark data

*All of rule sets are obtained by bagged PART with Weka [Witten 00]

(To make sure the availability of our method without any human criteria)

L1 L2 L3
(0.30) (0.35) (0.35)

anneal 95 33 39 23 41.1
audiology 149 44 58 47 38.9
autos 141 30 48 63 44.7
balance-
scale

281 76 102 103 36.7

breast-
cancer

122 41 34 47 38.5

breast-w 79 29 26 24 36.7
colic 61 19 18 24 39.3
credit-a 230 78 73 79 34.3

(0.30) (0.65) (0.05)
anneal 95 26 63 6 66.3
audiology 149 49 91 9 61.1
autos 141 41 95 5 67.4
balance-
scale

281 90 178 13 63.3

breast-
cancer

122 42 78 2 63.9

breast-w 79 22 55 2 69.6
colic 61 22 36 3 59.0
credit-a 230 69 150 11 65.2

Distribution II

#Mined
Rules

#Class labels
%Def. class

Distribution I
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The Learning Algorithms 
constructed by CAMLET 

original
classifier set

overall
control structure

final
eval. method

original
classifier set

overall
control structure

final
eval. method

anneal C4.5 tree Win+Boost+CS
Weighted
Voting

C4.5 tree Boost+CS
Weighted
Voting

audiology ID3 tree Boost Voting Random RuleSimple Iteration Best Select.

autos Random RuleWin+Iteration
Weighted
Voting

Random RuleBoost
Weighted
Voting

balance-
scale

Random RuleBoost Voting Random RuleCS+GA Voting

breast-
cancer

Random RuleGA+Iteration Voting Random RuleWin+Iteration
Weighted
Voting

breast-w ID3 tree Win
Weighted
Voting

ID3 tree CS+Iteration
Weighted
Voting

colic Random RuleCS+Win Voting ID3 tree Win+Iteration Voting

credit-a C4.5 tree Win+Iteration Voting ID3 tree CS+Boost+Iteration Best Select.

CS  means including reinfoecement of classifier set from Classifiser Systems
Boost  means including methods and control structure from Boosting
Win  means including methods and control structure from Window Strategy
GA  means including reinforcement of classifier set with Genetic Algorithm

Distribution I Distribution II
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J4.8

BPNN
SVM

CLR

OneR
Bagged J4.8

Boosted J4.8

Stacking
CAMLET

Performances of REMs on the training datasets
with three kinds of class distributions

•Performances of algorithms are suffered from probabilistic class distribution
especially in larger or/and unbalanced class distribution datasets.

Dist. I Dist. II
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Estimation of minimum training subset to 
construct valid REMs (from learning curve analysis)

If we construct REMs without particular human criterion, we should prepare
small (<100) dataset with balanced class distribution.

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET
anneal 20 14 17 29 29 16 14 36 20
audiology 21 18 65 64 41 21 14 56 27
autos 38 28 76 77 70 28 28 77 31
balance-
scale 12 14 15 15 32 14 9 51 128
breast-
cancer 16 17 22 41 22 14 14 41 36
breast-w 7 10 10 18 14 10 6 19 11
colic 8 8 9 22 14 8 8 24 8
credit-a 9 12 16 30 28 9 8 51 19

J4.8 BPNN SVM CLR OneR Bagged J4.8 Boosted J4.8 Stacking CAMLET
anneal 54 58 64 76 - 42 38 64 46
audiology 64 73 45 76 107 50 50 103 84
autos 66 102 84 121 98 45 39 76 76
balance-
scale 118 103 133 162 156 86 92 132 -
breast-
cancer 50 31 80 92 80 38 36 60 41
breast-w 44 36 31 48 71 34 34 52 53
colic 28 24 46 30 42 28 22 48 54
credit-a 118 159 - - 173 76 76 120 109

Distribution II

Distribution I
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Conclusion
Summary

Comparing learning algorithms to construct rule 
evaluation models for supporting a post-processing of 
data mining exactly

Our method can construct valid rule evaluation models with the 
39 objective rule evaluation indices at least the five basic 
learning algorithms and the four meta-learning algorithms.
Constructive meta-learning have been able to construct proper 
learning algorithms flexibly.
The algorithms have been able to construct valid rule evaluation
models with 10% of training subset with evaluations based on 
solid expert’s criterion.

Future works
attribute construction and attribute selection
Applying this method to other data from other domains
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