Evaluating Learning Algorithms Composed by a Constructive Meta-Learning Scheme for a Rule Evaluation Support Method Based on Objective Indices

<u>Hidenao Abe¹</u>, S. Tsumoto¹, M. Ohsaki², T. Yamaguchi³

Dept. of Medical Informatics, Shimane University, School of Medicine, Japan¹⁾

Faculty of Engineering, Doshisha University, Japan²⁾

Faculty of Science and Technology, Keio University, Japan³⁾

Outline

- Background and Research I ssues
- Rule Evaluation Support Method based on Objective Rule Evaluation indices
- Comparisons of Leaning Algorithms for Rule Evaluation Model Construction
- Conclusion

It is difficult for human experts to evaluate large number of rules completely!!

Related Work

- Many efforts have done to select rules with single objective index such as recall, precision, and so forth.
- At least 40 objective interestingness measures are developed and investigated to express a human evaluation criterion.
- Ohsaki et al. investigated the relationship between each index and criterion of an expert. However, no single objective index can express the human criterion exactly. [Ohsaki04].
- Applicable domain of these interestingness measures have been never generalized.

Research I ssues

- A novel rule evaluation support method with rule evaluation models (REMs).
 - The system obtains a dataset to combine multiple objective indices and evaluations from a human expert.
- Detailed issues of our rule evaluation support method
 - To construct more accurate REMs to support human experts more exactly
 - □ To construct a valid REM with smaller training dataset
 - To construct a reasonable REMs to given human evaluation

Outline

Background

- Rule Evaluation Support Method based on Objective Rule Evaluation indices
 - Overview
 - Learning Algorithm Selection for Rule Evaluation Model Construction
- Comparisons of Leaning Algorithms for Rule Evaluation Model Construction
- Conclusion

Overview of the rule evaluation support with REMs

Selective meta-learning scheme

Integrating base-level classifiers, which are learned with different training data sets generating by

"Bootstrap Sampling" (bagging)
 weighting ill-classified instances (boosting)

Integrating base-level classifiers, which are learned from different learning algorithms

□ simple voting (voting)

constructing meta-level classifier with a meta-level training data set (stacking, cascading)

Analysis of two or more learning algorithms

Analysis of two or more learning algorithms

Organizing learning methods, treated objects and control structures

CAMLET: A Constructive Meta-Learning Tool

Outline

Background

- Rule Evaluation Support Method based on Objective Rule Evaluation indices
- Comparisons of Leaning Algorithms for Rule Evaluation Model Construction
- Conclusion

Comparisons of learning algorithms

- Comparison on two actual datamining result
 - To evaluate the availability on solid evaluations from a domain expert
 - To evaluate the flexibility for changes of domain expert's criteria
- Comparison on rule sets of benchmark datasets with artificial class distributions
 - To evaluate the availability on evaluations without any particular human criterion
- Evaluation viewpoints for these comparisons:
 - Accuracies to the whole dataset and Leave-One-Out validation, and their recalls and precisions of each class label
 - Estimating minimum size of training subset to construct valid REMs with learning curves
 - Looking at elements of REMs from an actual data mining result

Objective Rule Evaluation indices

calculated on a validation dataset for each classification rule

The 39 objective indices [Ohsaki 04]

- Based on probability (26 indices)
 - Coverage, Prevalence, Precision, Recall, Support, Accuracy, Specificity, Lift, Leverage, Added Value, Relative Risk, Jaccard, Certainty Factor, Odds ratio, Yule's Q, Yule's Y, Kappa, Koelesgen's Interestingness, Brin's Interestingness, Brin's Conviction, GOI, Credibility, KSI, Laplace Correction, Collective Strength
- Based on test statistics (3 indices)
 - □ Chi-Square(with only True/Positive, with a whole confusion matrix), Gini Gain
- Based on information theory (6 indices)
 - Mutual Information, J-Measure, YLI1, YLI2, YZI, K-Measure
- Based on number of instances (3 indices)
 - □ coefficient, PSI, Cosine Similarity
- Based on similarity between rules on a validation dataset (2 indices)
 GBI, Peculiarity

Learning algorithms for comparisons

- Decision Tree: J4.8
- Neural Network: BPNN (with back-propagation)
- Classification Via Linear Regression: CLR
- **SVM**: Sequential Minimal Optimization [Platt98]
- OneR
- Bagged J4.8
- Boosted J4.8
- Stacking
 - Base-level learning algorithms are all of the above learning algorithms.
 - □ Meta-learner is J4.8.

Learning Algorithms constructed by CAMLET

The Flow of the comparison with the meningitis datamining result [Hatazawa 00]

Sample of the data set

							-
ruleI	D	Accuracy	Added_Value	• • •	YulesQ	YulesY	HumanExpert
Rule ²	1	0.81	0.41		0.73	0.44	NI
Rule ²	10	0.81	0.43	• • •	0.75	0.45	NI
Rule ²	11	0.85	0.46		0.79	0.49	
Rule ²	12	0.84	0.56	• • •	0.87	0.58	
Rule ²	13	0.94	0.44	• • •	0.88	0.59	
Rule'	14	0.81	0.43	• • •	0.75	0.45	NI

—— 39 objective rule evaluation indices ——

Facilic-Kim Knowledge Acquisition workshop 2000 (FKAW2006)

The Learning Algorithm constructed by CAMLET

Search Settings:

- Method: GA refinement with continuous generation model
- Initial population: 4 Method to select parents: tournament
- Number of refinement: 100 times

Iterated boosted C4.5 with reinforcement of classifiers from Classifier Systems

Performance Comparison of the nine algorithms (All of rules =244 , 'I '=48(19.7%), (NI '=187(76.6%)), (NU'=9(3.7%))

Loarning		Eva	aluation	on the tr	aining da	taset			
	A a a		Recall			Precisior	า		
Algorithms	ACC.		NI	NU		NI	NU		
CAMLET	89.4	70.8	97.9	11.1	85.0	90.2	100.0		
Stacking	81.1	37.5	96.3	0.0	72.0	87.0	0.0		
Boosted J4.8	99.2	97.9	99.5	100.0	97.9	99.5	100.0		
Bagged J4.8	87.3	62.5	97.9	0.0	81.1	88.4	0.0		
J4.8	85.7	41.7	97.9	66.7	80.0	86.3	85.7		
BPNN	86.9	81.3	89.8	55.6	65.0	94.9	71.4		
SVM	81.6	35.4	97.3	0.0	68.0	83.5	0.0		
CLR	82.8	41.7	97.3	0.0	71.4	84.3	0.0		
OneR	82.0	56.3	92.5	0.0	57.4	87.8	0.0		
		Leave - One-Out(LOO)							
Algorithms	Acc		Recall		Precision				
Aigentinis	7.00.		NI	NU		NI	NILI		
CAMLET	80.3	7.4	73.0	0.0	7.4	73.0	0.0		
Stacking	81.1	37.5	96.3	0.0	72.0	87.0	0.0		
Boosted J4.8	74.2	37.5	87.2	0.0	39.1	84.0	0.0		
Bagged J4.8	77.9	31.3	93.6	0.0	50.0	81.8	0.0		
J4.8	79.1	29.2	95.7	0.0	63.6	82.5	0.0		
BPNN	77.5	39.6	90.9	0.0	50.0	85.9	0.0		
SVM	81.6	35.4	97.3	0.0	68.0	83.5	0.0		
CLR	80.3	35.4	95.7	0.0	60.7	82.9	0.0		
OneR	75.8	27.1	92.0	0.0	37.1	82.3	0.0		

1. Learning algorithm constructed by CAMLET have achieved higher accuracy with higher reliability.

2. To predict very minor class 'NU', a proper learning algorithm will be needed.

Leaning curves on achieve rates

(achieve rate = (acc. of each sub-sample / acc. of whole sample) *100)

Leaning curves on achieve rates

(achieve rate = (acc. of each sub-sample / acc. of whole sample) *100)

Pacific-Rim Knowledge Acquisition Workshop 2006 (PKAW2006)

Contents of Rule Evaluation Models (Statistics of 10,000 bootstrap iterations)

Datasets from chronic hepatitis data mining results

		Cla	ss Dis	stribut	tion	
	#Rules	EI		NI	NU	%Def class
GPT						
Phase1(GPT1)	30	3	8	16	3	53.33
Phase2(GPT2)	21	2	6	12	1	57.14
IFN						
First Time(IFN1)	26	4	7	11	7	42.31
Second Time(IFN2)	32	15	5	11	1	46.88

GPT data mining results consists of two phases, which tried to predict GPT patterns with combination of patterns of blood and urine test result.

IFN data mining processes did try to find out valuable rules about IFN therapy results.

Learning algorithms constructed by CAMLET Search Settings:

- Method: GA refinement with continuous generation model

- Initial population: 4 Method to select parents: tournament
- Number of refinement: 100 times

	original classifier set	overall	final eval method
GPT1	C4.5 tree	Bagging	Best selection
GPT2	C4.5 tree	CS+Boost+Iteration	Weighted Voting
IFN1	C4.5 tree	CS+Boost+Iteration	Weighted Voting
IFN2	C4.5 tree	CS+Boost+Iteration	Weighted Voting

CS means including reinforcement of classifier set from Classifiser Systems *Boost* means including methods and control structure from Boosting

All of the learning algorithms based on C4.5 decision tree. To GPT2, IFN1, and IFN2, CAMLET constructed almost the same learning algorithms with method from CS and Boosting.

Performance comparison

On the whole datasets:

Leave-One-Out:

			Precisio	on			Recall						Precisio	on			Recall			
		Acc	EI		NI	NU	EI		NI	NU		Acc	El		NI	NU	EI		NI	NU
GPT1											GPT1						[
-	J4.8	96.7	100.0	88.9	100.0	100.0	66.7	100.0	100.0	100.0	J4.8	50.0	0.0	60.0	60.0	0.0	0.0	75.0	56.3	0.0
	BPNN	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	BPNN	30.0	0.0	12.5	50.0	0.0	0.0	12.5	50.0	0.0
	SVM	56.7	0.0	100.0	68.2	14.3	0.0	12.5	93.8	33.3	SVM	46.7	0.0	0.0	65.0	11.1	0.0	0.0	81.3	33.3
	CLR	63.3	0.0	66.7	62.5	0.0	0.0	50.0	93.8	0.0	CLR	40.0	0.0	14.3	50.0	0.0	0.0	12.5	68.8	0.0
	OneR	60.0	0.0	66.7	59.3	0.0	0.0	25.0	100.0	0.0	OneR	43.3	0.0	25.0	55.6	0.0	0.0	37.5	62.5	0.0
	BagJ4.8	93.3	75.0	87.5	100.0	100.0	100.0	87.5	93.8	100.0	BagJ4.8	33.3	0.0	12.5	50.0	0.0	0.0	12.5	56.3	0.0
	BooJ4.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	BooJ4.8	43.3	0.0	42.9	62.5	0.0	0.0	37.5	62.5	0.0
	Stacking	70.0	0.0	62.5	72.7	0.0	0.0	62.5	100.0	0.0	Stacking	36.7	0.0	33.3	61.5	0.0	0.0	37.5	50.0	0.0
	CAMLET	73.3	0.0	50.0	87.5	100.0	0.0	75.0	87.5	66.7	CAMLEŤ	43.3	0.0	6.7	33.3	3.3	0.0	6.7	33.3	3.3
GPT2	-										GPT2		-							
	J4.8	90.5	66.7	85.7	100.0	0.0	100.0	100.0	91.7	0.0	J4.8	76.2	0.0	66.7	90.9	0.0	0.0	100.0	83.3	0.0
	BPNN	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	BPNN	66.7	0.0	83.3	81.8	0.0	0.0	83.3	75.0	0.0
	SVM	95.2	100.0	100.0	92.3	100.0	50.0	100.0	100.0	100.0	SVM	81.0	0.0	100.0	91.7	25.0	0.0	83.3	91.7	100.0
	CLR	85.7	50.0	100.0	85.7	0.0	50.0	83.3	100.0	0.0	CLR	76.2	0.0	83.3	84.6	0.0	0.0	83.3	91.7	0.0
	OneR	85.7	0.0	75.0	92.3	0.0	0.0	100.0	100.0	0.0	OneR	81.0	0.0	66.7	91.7	0.0	0.0	100.0	91.7	0.0
	BagJ4.8	90.5	100.0	75.0	100.0	0.0	100.0	100.0	91.7	0.0	BagJ4.8	76.2	0.0	66.7	90.9	0.0	0.0	100.0	83.3	0.0
	BooJ4.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	BooJ4.8	76.2	0.0	66.7	100.0	0.0	0.0	100.0	83.3	0.0
	Stacking	61.9	66.7	0.0	100.0	0.0	100.0	0.0	91.7	0.0	Stacking	71.4	0.0	83.3	76.9	0.0	0.0	83.3	83.3	0.0
	CAMLET	81.0	0.0	75.0	84.6	0.0	0.0	100.0	91.7	0.0	CAMLET	76.2	0.0	28.6	47.6	0.0	0.0	28.6	47.6	0.0
INF1											INF1									
	J4.8	88.5	80.0	100.0	83.3	100.0	100.0	71.4	90.9	100.0	J4.8	19.2	37.5	0.0	20.0	0.0	75.0	0.0	18.2	0.0
	BPNN	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	BPNN	26.9	40.0	22.2	25.0	25.0	50.0	28.6	18.2	25.0
	SVM	46.2	26.7	0.0	70.0	100.0	100.0	0.0	63.6	25.0	SVM	34.6	21.4	0.0	54.5	0.0	75.0	0.0	54.5	0.0
	CLR	53.8	100.0	0.0	47.6	66.7	50.0	0.0	90.9	50.0	CLR	19.2	33.3	0.0	28.6	0.0	25.0	0.0	36.4	0.0
	OneR	50.0	0.0	50.0	50.0	0.0	0.0	85.7	63.6	0.0	OneR	19.2	0.0	11.1	23.5	0.0	0.0	14.3	36.4	0.0
	BagJ4.8	96.2	80.0	100.0	100.0	100.0	100.0	100.0	90.9	100.0	BagJ4.8	26.9	33.3	37.5	22.2	0.0	50.0	42.9	18.2	0.0
	BooJ4.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	BooJ4.8	23.1	42.9	0.0	27.3	0.0	75.0	0.0	27.3	0.0
	Stacking	11.5	0.0	12.5	14.3	0.0	0.0	14.3	18.2	0.0	Stacking	23.1	0.0	33.3	28.6	0.0	0.0	57.1	18.2	0.0
	CAMLET	76.9	100.0	60.0	80.0	100.0	100.0	85.7	72.7	50.0		30.8	11.5	0.0	19.2	0.0	11.5	0.0	19.2	0.0
INF2											INF2		1							
	J4.8	90.6	88.2	100.0	90.9	0.0	100.0	80.0	90.9	0.0	J4.8	75.0	76.5	66.7	75.0	0.0	86.7	40.0	81.8	0.0
	BPNN	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	BPNN	37.5	50.0	28.6	22.2	0.0	53.3	40.0	18.2	0.0
	SVM	56.3	72.7	0.0	45.0	100.0	53.3	0.0	81.8	100.0	SVM	31.3	36.4	0.0	28.6	0.0	26.7	0.0	54.5	0.0
	CLR	65.6	63.2	100.0	60.0	0.0	80.0	60.0	54.5	0.0	CLR	34.4	41.2	20.0	30.0	0.0	46.7	20.0	27.3	0.0
	OneR	68.8	62.5	0.0	87.5	0.0	100.0	0.0	63.6	0.0	OneR	68.8	60.0	0.0	100.0	0.0	100.0	0.0	63.6	0.0
	BagJ4.8	90.6	88.2	100.0	90.9	0.0	100.0	80.0	90.9	0.0	BagJ4.8	71.9	70.0	100.0	72.7	0.0	93.3	20.0	72.2	0.0
	BooJ4.8	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	BooJ4.8	71.9	76.5	100.0	70.0	0.0	86.7	60.0	63.6	0.0
	Stacking	40.6	46.2	0.0	33.3	0.0	80.0	0.0	9.1	0.0	Stacking	53.1	58.8	0.0	58.3	0.0	66.7	0.0	63.6	0.0
	CAMLET	90.6	83.3	100.0	100.0	100.0	100.0	100.0	72.7	100.0	CAMLET	43.8	18.8	0.0	18.8	0.0	18.8	0.0	18.8	0.0

Pacific-Rim Knowledge Acquisition Workshop 2006 (PKAW2006)

Estimating minimum training subsamples

	J4.8	BPNN	SVM	CLR	OneR	BagJ4.8	BooJ4.8	Stacking	CAMLET
GPT1	14	14	20	16	14	14	12	24	16
GPT2	6	5	5	16	11	6	6	11	8
IFN1	8	6	10	16	18	10	8	16	14
IFN2	6	8	8	16	16	8	6	12	8

The number of training sub-samples to construct valid rule evaluation model are decreased on each second time data mining.

Learning algorithms constructed by CAMLET needs as same training sub-samples as Bagged J4.8 and Boosted J4.8.

Contents of learned rule evaluation models (Statistics of 10,000 bootstrap iterations)

Pacific-Rim Knowledge Acquisition Workshop 2006 (PKAW2006)

Datasets from rule sets learned with the eight UCI benchmark data

(To make sure the availability of our method without any human criteria)

	#Mined	#0	Class labe	els	
	Rules	L1	L2	L3	
Distribution I		(0.30)	(0.35)	(0.35)	
anneal	95	33	39	23	41.1
audiology	149	44	58	47	38.9
autos	141	30	48	63	44.7
balance- scale	281	76	102	103	36.7
breast- cancer	122	41	34	47	38.5
breast-w	79	29	26	24	36.7
colic	61	19	18	24	39.3
<u> </u>	230	78	73	79	34.3
Distribution II		(0.30)	(0.65)	(0.05)	
anneal	95	26	63	6	66.3
audiology	149	49	91	9	61.1
autos	141	41	95	5	67.4
balance- scale	281	90	178	13	63.3
breast- cancer	122	42	78	2	63.9
breast-w	79	22	55	2	69.6
colic	61	22	36	3	59.0
credit-a	230	69	150	11	65.2

*All of rule sets are obtained by bagged PART with Weka [Witten 00]

Pacific-Rim Knowledge Acquisition Workshop 2006 (PKAW2006)

The Learning Algorithms constructed by CAMLET

		Distribution I		Distribution II				
	original	overall	final	original	overall	final		
	classifier set	control structure	eval. method	classifier set	control structure	eval. method		
anneal	C4.5 tree	Win+Boost+CS	Weighted Voting	C4.5 tree	Boost+CS	Weighted Voting		
audiology	ID3 tree	Boost	Voting	Random Rule	Simple Iteration	Best Select.		
autos	Random Rule	Win+Iteration	Weighted Voting	Random Rule	Boost	Weighted Voting		
balance- scale	Random Rule	Boost	Voting	Random Rule	CS+GA	Voting		
breast - cancer	Random Rule	GA+Iteration	Voting	Random Rule	Win+Iteration	Weighted Voting		
breast-w	ID3 tree	Win	Weighted Voting	ID3 tree	CS+Iteration	Weighted Voting		
colic	Random Rule	CS+Win	Voting	ID3 tree	Win+Iteration	Voting		
credit-a	C4.5 tree	Win+Iteration	Voting	ID3 tree	CS+Boost+Iteration	Best Select.		

CS means including reinfoecement of classifier set from Classifiser Systems *Boost* means including methods and control structure from Boosting *Win* means including methods and control structure from Window Strategy *GA* means including reinforcement of classifier set with Genetic Algorithm

Performances of REMs on the training datasets

with three kinds of class distributions

•Performances of algorithms are suffered from probabilistic class distribution especially in larger or/and unbalanced class distribution datasets.

Pacific-Rim Knowledge Acquisition Workshop 2006 (PKAW2006)

Estimation of minimum training subset to

construct valid REMs (from learning curve analysis)

					D	istribution I			
	J4.8	BPNN	SVM	CLR	OneR	Bagged J4.8	Boosted J4.8	Stacking	CAMLET
anneal	20	14	17	29	29	16	14	36	20
audiology	21	18	65	64	41	21	14	56	27
autos	38	28	76	77	70	28	28	77	31
balance-									
scale	12	14	15	15	32	14	9	51	128
breast-									
cancer	16	17	22	41	22	14	14	41	36
breast-w	7	10	10	18	14	10	6	19	11
colic	8	8	9	22	14	8	8	24	8
credit-a	9	12	16	30	28	9	8	I 51	19
					D	stribution II			
	J4.8	BPNN	SVM	CLR	Di OneR	stribution II Bagged J4.8	Boosted J4.8	Stacking	CAMLET
anneal	J4.8 54	BPNN 58	<u>SVM</u> 64	CLR 76	Di OneR -	stribution II Bagged J4.8 42	Boosted J4.8 38	Stacking 64	CAMLET 46
anneal audiology	<u>J4.8</u> 54 64	BPNN 58 73	SVM 64 45	CLR 76 76	Di <u>OneR</u> - 107	stribution II Bagged J4.8 42 50	Boosted J4.8 38 50	Stacking 64 103	CAMLET 46 84
anneal audiology autos	J4.8 54 64 66	BPNN 58 73 102	SVM 64 45 84	CLR 76 76 121	Di <u>OneR</u> - 107 98	stribution II Bagged J4.8 42 50 45	Boosted J4.8 38 50 39	<u>Stacking</u> 64 103 76	CAMLET 46 84 76
anneal audiology autos balance-	<u>J4.8</u> 54 64 66	BPNN 58 73 102	SVM 64 45 84	CLR 76 76 121	Di OneR - 107 98	stribution II Bagged J4.8 42 50 45	Boosted J4.8 38 50 39	<u>Stacking</u> 64 103 76	CAMLET 46 84 76
anneal audiology autos balance- scale	J <u>4.8</u> 54 64 66 118	BPNN 58 73 102 103	SVM 64 45 84 133	CLR 76 76 121 162	Di <u>OneR</u> - 107 98 156	stribution II Bagged J4.8 42 50 45 86	Boosted J4.8 38 50 39 92	<u>Stacking</u> 64 103 76 132	CAMLET 46 84 76
anneal audiology autos balance- scale breast-	<u>J4.8</u> 54 64 66 118	BPNN 58 73 102 103	<u>SVM</u> 64 45 84 133	CLR 76 76 121 162	Di <u>OneR</u> - 107 98 156	stribution II Bagged J4.8 42 50 45 86	Boosted J4.8 38 50 39 92	<u>Stacking</u> 64 103 76 132	CAMLET 46 84 76 -
anneal audiology autos balance- scale breast- cancer	J <u>4.8</u> 54 64 66 118 50	BPNN 58 73 102 103 31	SVM 64 45 84 133 80	CLR 76 76 121 162 92	Di <u>OneR</u> - 107 98 156 80	stribution II Bagged J4.8 42 50 45 86 38	Boosted J4.8 38 50 39 92 36	<u>Stacking</u> 64 103 76 132 60	CAMLET 46 84 76 - 41
anneal audiology autos balance- scale breast- cancer breast-w	<u>J4.8</u> 54 64 66 118 50 44	BPNN 58 73 102 103 31 36	SVM 64 45 84 133 80 31	CLR 76 76 121 162 92 48	Di <u>OneR</u> 107 98 156 80 71	stribution II Bagged J4.8 42 50 45 86 38 34	Boosted J4.8 38 50 39 92 36 34	<u>Stacking</u> 64 103 76 132 60 52	CAMLET 46 84 76 - 41 53
anneal audiology autos balance- scale breast- cancer breast-w colic	<u>J4.8</u> 54 64 66 118 50 44 28	BPNN 58 73 102 103 31 36 24	SVM 64 45 84 133 80 31 46	CLR 76 76 121 162 92 48 30	Di OneR - 107 98 156 80 71 42	stribution II Bagged J4.8 42 50 45 86 38 34 28	Boosted J4.8 38 50 39 92 36 34 22	Stacking 64 103 76 132 60 52 48	CAMLET 46 84 76 - 41 53 54

If we construct REMs without particular human criterion, we should prepare small (<100) dataset with balanced class distribution.

Outline

Background

- Rule Evaluation Support Method based on Objective Rule Evaluation indices
- Comparisons of Leaning Algorithms for Rule Evaluation Model Construction

Conclusion

Conclusion

Summary

- Comparing learning algorithms to construct rule evaluation models for supporting a post-processing of data mining exactly
 - Our method can construct valid rule evaluation models with the 39 objective rule evaluation indices at least the five basic learning algorithms and the four meta-learning algorithms.
 - Constructive meta-learning have been able to construct proper learning algorithms flexibly.
 - The algorithms have been able to construct valid rule evaluation models with 10% of training subset with evaluations based on solid expert's criterion.

Future works

attribute construction and attribute selection

Applying this method to other data from other domains

2006/8/7

Acknowledgement

This research is supported by the Grant-in-Aid for Young Scientists(B), 17700152, by Ministry of Education, Science and Culture for Japan