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Abstract. In this paper, we present an evaluation of novel rule eval-
uation support method for post-processing of mined results with rule
evaluation models based on objective indices. Post-processing of mined
results is one of the key issues in a data mining process. However, it is dif-
ficult for human experts to evaluate many thousands of rules from a large
dataset with noises completely. To reduce the costs of rule evaluation
task, we have developed the rule evaluation support method with rule
evaluation models, which are obtained with objective indices of mined
classification rules and evaluations of a human expert for each rule. To
evaluate performances of learning algorithms for constructing rule eval-
uation models, we have done a case study on the meningitis data mining
as an actual problem. Furthermore, we have also evaluated our method
on four rulesets from the four kinds of UCI datasets.

1 Introduction

In recent years, huge data are easily stored on information systems in natural sci-
ence, social science and business domains, developing information technologies.
With these huge data, people hope to utilize them for their purposes. Besides,
data mining techniques have been widely known as a process for utilizing stored
data on database systems, combining different kinds of technologies such as
database technologies, statistical methods and machine learning methods. Es-
pecially, IF-THEN rules, which are produced by rule induction algorithms, are
discussed as one of highly usable and readable output of data mining. However,
to large dataset with hundreds attributes including noises, the process often ob-
tains many thousands of rules. From such huge rule set, it is difficult for human
experts to find out valuable knowledge which are rarely included in the rule set.

To support such a rule selection, many efforts have done using objective rule
evaluation indices such as recall, precision, and other interestingness measure-
ments (we call them ‘objective indices’ later). However, it is also difficult to



estimate a criterion of a human expert with single objective rule evaluation in-
dex, because his/her subjective criterion such as interestingness and importance
for his/her purpose is influenced by the amount of his/her knowledge and/or a
passage of time.

To above issues, we have been developed an adaptive rule evaluation support
method for human experts with rule evaluation models, which predict experts’
criteria based on objective indices, re-using results of evaluations of human ex-
perts. In Section 3, we describe the rule evaluation model construction method
based on objective indices. Then we present a performance comparison of learn-
ing algorithms for constructing rule evaluation models in Section 4. With the
results of the comparison, we discuss about the availability of our rule evaluation
model construction approach.

2 Related Work

Many efforts have done to select valuable rules from mined large rule set based
on objective rule evaluation indexes. Some of these works suggest the indexes to
discover interesting rules from such a large amount of rules.

Focusing on interesting rule selection with objective indexes, researchers have
developed more than forty objective indexes based on number of instances,
probability, statistics values, information quantity, distance of rules or their at-
tributes, and complexity of a rule[11, 21, 23]. Most of these indexes are used to
remove meaningless rules rather than to discover really interesting ones for a
human expert, because they can not include domain knowledge. In contrast, a
dozen of subjective indexes estimate how a rule fits with a belief, a bias or a
rule template formulated beforehand by a human expert. Although these sub-
jective indexes are useful to discover really interesting rules to some extent due
to their built-in domain knowledge, they depend on the precondition that a hu-
man expert is able to clearly formulate his/her interest. Although interestingness
indexes were verified their availabilities on each suggested domain, nobody has
validated their availabilities on the other domains or/and characteristics related
to the background of a given dataset.

Ohsaki et. al[15] investigated the relation between objective indexes and real
human interests, taking real data mining results and their human evaluations.
In this work, the comparison shows that it is difficult to predict real human
interests with a single objective index. Based on the result, they indicated the
possibility of logical combination of the objective indexes to predict real human
interests more exactly.

3 Rule Evaluation Support with Rule Evaluation Model
based on Objective Indices

We considered the process of modeling rule evaluations of human experts as the
process to clear up relationships between the human evaluations and features
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Fig. 1. Overview of the construction method of rule evaluation models.

of input if-then rules. With this consideration, we decided that the process of
rule evaluation model construction can be implemented as a learning task. Fig.1
shows the process of rule evaluation model construction based on re-use of human
evaluations and objective indices for each mined rule.

At the training phase, attributes of a meta-level training data set is obtained
by objective indices such as recall, precision and other rule evaluation values.
The human evaluations for each rule are joined as class of each instance. To
obtain this data set, a human expert has to evaluate the whole or part of input
rules at least once. After obtaining the training data set, its rule evaluation
model is constructed by a learning algorithm. At the prediction phase, a human
expert receives predictions for new rules based on their values of the objective
indices. Since the task of rule evaluation models is a prediction, we need to
choose a learning algorithm with higher accuracy as same as current classification
problems.

4 Performance Comparisons of Learning Algorithms for
Rule Model Construction

To predict human evaluation labels of a new rule based on objective indices
more exactly, we have to construct a rule evaluation model, which has higher
predictive accuracy.

In this section, we firstly present the result of an empirical evaluation with
the dataset from the result of a meningitis data mining[9]. Then to confirm
the performance of our approach on the other datasets, we evaluated the five
algorithms on four rule sets from four kinds of UCI benchmark datasets [10].
With the experimental results, we discuss about the following three view points:
accuracies of rule evaluation models, analyzing learning curves of the learning
algorithms, and contents of learned rule evaluation models.

As an evaluation of accuracies of rule evaluation models, we have compared
predictive accuracies on the whole dataset and Leave-One-Out. The accuracy of a
validation dataset D is calculated with correctly predicted instances Correct(D)



Table 1. The objective rule evaluation indices for classification rules used in this
research. P: Probability of the antecedent and/or consequent of a rule. S: Statistical
variable based on P. I: Information of the antecedent and/or consequent of a rule.
N: Number of instances included in the antecedent and/or consequent of a rule. D:
Distance of a rule from the others based on rule attributes.

Theory[Index Name (Abbreviation) [Reference Number of Literature]
P Coverrage(Coverage), Prevalence(Prevalence)
Precision(Precision), Recall(Recall)

Suppurt(Support), Specificity (Specificity)
Accuracy(Accuracy), Lift(Lift)

Leverage(Leverage), Added Value(Added Value)[21]
Klésgen’s Interestingness(KI)[14], Relative Risk(RR)[1]

Brin’s Interest(BI)[2], Brin’s Conviction(BC)[2]

Certainty Factor(CF)[21], Jaccard Coefficient(Jaccard)[21]
F-Measure(F-M)[19], Odds Ratio(OR)[21]

Yule’s Q(YuleQ)[21], Yule’s Y (YuleY)[21]
Kappa(Kappa)|[21], Collective Strength(CST)[21]

Gray andOrlowska’s Interestingness weighting Dependency(GOI)[7]
Gini Gain(Gini)[21], Credibility(Credibility)[8]

S X2 Measure for One Quadrant(x?-M1)[6]
X2 Measure for Four Quadrant(x?-M4)[6]
1 J-Measure(J-M)[20], K-Measure(K-M)[15]

Mutual Information(MI)[21]

Yao and Liu’s Interestingness 1 based on one-way support(YLI1)[23]
Yao and Liu’s Interestingness 2 based on two-way support(YLI2)[23]
Yao and Zhong’s Interestingness(Y ZI)[23]

Cosine Similarity (CSI)[21], Laplace Correction(LC)[21]

¢ Coefficient(¢)[21], Piatetsky-Shapiro’s Interestingness(PSI)[16]

D Gago and Bento’s Interestingness(GBI)[5]

Peculiarity (Peculiarity)[24]

as Acc(D) = (Correct(D)/|D]) x 100, where |D| means the size of the dataset.
Recalls of class i on a validation dataset is calculated with correctly predicted
instances about the class Correct(D;) as Recall(D;) = (Correct(D;)/|D;|) %
100, where |D;| means the size of instances with class 7. Also the precision of

class i is calculated with the size of instances predicted ¢ as Precision(D;) =
(Correct(D;)/Predicted(D;)) x 100.

As for learning curves, we obtained learning curves about accuracies to the
whole training dataset to evaluate whether each learning algorithm can perform
in early stage of a process of rule evaluations. Accuracies from randomly sub-
sampled training datasets are averaged with 10 times trials on each percentage
of subset.

Looking at elements of the rule evaluation models on the meningitis data
mining result, we consider the characteristics of objective indices, which are
used in these rule evaluation models.

To construct a dataset to learn a rule evaluation model, values of objective
indices have been calculated for each rule, taking 39 objective indices as shown in
Tablel. Thus each dataset for each rule set has the same number of instances as
the rule set. Each instance consists of 40 attributes including the class attribute.

To these dataset, we applied five learning algorithms to compare their perfor-
mance as a rule evaluation model construction method. We used the following
learning algorithms from Weka[22]: C4.5 decision tree learner[18] called J4.8,



neural network learner with back propagation (BPNN)[12], support vector ma-
chines (SVM)*[17], classification via linear regressions (CLR)?[3], and OneR[13].

4.1 Constructing Rule Evaluation Models on an Actual Datamining
Result

In this case study, we have taken 244 rules, which are mined from six dataset
about six kinds of diagnostic problems as shown in Table2. These datasets are
consisted of appearances of meningitis patients as attributes and diagnoses for
each patient as class. Each rule set was mined with each proper rule induction al-
gorithm composed by a constructive meta-learning system called CAMLET/9)].
For each rule, we labeled three evaluations (I:Interesting, NI:Not-Interesting,
NU:Not-Understandable), according to evaluation comments from a medical ex-
pert.
Table 2. Description of the meningitis datasets and their datamining results

Dataset #Attributes|#Class||#Mined rules|#’I’ rules #’NT’ rules #’NU’ rules
Diag 29 6 53 15 38 0
C_Cource 40 12 22 3 18 1
Culture+diag 31 12 57 7 48 2
Diag2 29 2 35 8 27 0
Course 40 2 53 12 38 3
Cult_find 29 2 24 3 18 3
TOTAL — — 244 48 187 9

Comparison on Classification Performances In this section, we show the
result of the comparisons of accuracies on the whole dataset, recall of each class
label, and precisions of each class label. Since Leave-One-Out holds just one test
instance and remains as the training dataset repeatedly for each instance of a
given dataset, we can evaluate the performance of a learning algorithm to a new
dataset without any ambiguity.

The results of the performances of the five learning algorithms to the whole
training dataset and the results of Leave-One-Out are also shown in Table3. All
of the accuracies, Recalls of I and NI, and Precisions of I and NI are higher than
predicting default labels.

Table 3. Accuracies(%), Recalls(%) and Precisions(%) of the five learning algorithms.

On the whole training dataset Leave-One-Out
Recall of Precision of Recall of | Precision of
Acc. I[ NI[ NU I[ NI[ NU||Acc. I[ NI[NU I[ NI[NU

J4.8 || 85.7|41.7|97.9|66.7]80.0(86.3|85.7|| 79.1{29.2|95.7| 0.0|63.6|82.5| 0.0
BPNN|| 86.9(81.3|89.8|55.6(65.0{94.9|71.4|| 77.5|39.6]90.9| 0.0/50.0{85.9| 0.0
SVM || 81.6/35.4|97.3| 0.0/68.0(83.5| 0.0||81.6{35.4|97.3| 0.0|68.0|83.5| 0.0
CLR || 82.8|41.7|97.3| 0.0|71.4(84.3| 0.0{/80.3(35.4|95.7| 0.0|60.7|82.9] 0.0
OneR || 82.0|56.3|92.5| 0.0/57.4(87.8| 0.0|| 75.8{27.1|92.0| 0.0|37.1|82.3| 0.0

Comparing with the accuracy of OneR, the other learning algorithms achieve
equal or higher performance with combination of multiple objective indices than
4 The kernel function was set up polynomial kernel.

5 We set up the elimination of collinear attributes and the model selection with greedy
search based on Akaike Information Metric.



sorting with single objective index. Looking at Recall values on class I, BPNN
have achieved the highest performance. As for the other algorithms, they show
lower performance than OneR, because they have tended to be learned classifi-
cation patterns for the major class NI.

The accuracies of Leave-One-Out shows robustness of each learning algo-
rithm. These learning algorithms have achieved from 75.8% to 81.9%. However,
these learning algorithms have not been able to classify the instances with class
NU, because it is difficult to predict a minor class label in this dataset.

Learning Curves of the Learning Algorithms Since the rule evaluation
model construction method needs evaluations of mined rules by a human ex-
pert, we have investigated learning curves of each learning algorithm to estimate
minimum training subset to construct a valid rule evaluation model. The upper
table in Fig.2 shows accuracies to the whole training dataset with each subset of
training dataset. The percentages of achievements for each learning algorithm,
comparing with the accuracy with the whole dataset, are shown in the lower
chart of Fig.2.

As shown in these results, SVM and CLR, which learn hype-planes, achieves
grater than 95% with only less than 10% of training subset. Although decision
tree learner and BPNN could learn better classifier to the whole dataset than
these hyper-plane learners, they need more training instances to learn accurate
classifiers.
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Fig. 2. Learning Curves of accuracies(%) on the learning algorithms with sub-sampled
training dataset: The left table shows accuracies(%) on each training dataset to the
whole dataset. The left graph shows their achievement ratio(%). Also the right table
shows recalls(%), and the graph shows their achievement ratio(%).
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To eliminate known ordinary knowledge from large rule set, it is needed
to classify non-interesting rules correctly. The right upper table in Fig.2 shows
percentages of recalls on NI. The right lower chart in Fig.2 also shows the per-
centages of achievements on recall of NI, comparing with the recall of NI on
the whole training dataset. Looking at this result, we can eliminate NI rules
with rule evaluation models from SVM and BPNN even if there is only 10% of



(a)

IF YLI1 <0.02 THEN "I
IF YLI1 >=0.02 and YLI1<0.29 THEN "NI"
IF YLI1 >=0.29 and YLI1 <0.43 THEN "I
IF YLI1 >=0.43 and YLI1 <0.44 THEN "NI"
IF YL >=0.44 and YL <0.55 THEN
IF YLl >=0.55 and YLI1 <0.63 THEN
IF YLI1 >=0.63 and YLI1 <0.83 THEN
IF YLI1 >=0.83 THEN "NI"

Laplace Correction
4

>0.44

(©)

NU = NI = =
0.6202 * Specificity + 1.7173 * Precision + -1.4417 * Precision +
0.6224 * Accuracy + -0.5063 * Accuracy + -0.7286 * Specificity +
-1.1384 * Leverage + 0.5673 * RelativeRisk + 0.4085 * Lift +
-0.6895 * RelativeRisk + -1.2718 * CertaintyFactor + 0.6297 * CertaintyFactor +
0.3704 * CertaintyFactor + 0.5955 * YulesQ + -1.4477 * CollectiveStrength +
0.5722 * OddsRatio + -0.4609 * K-Measure + 1.5449 * GiniGain +
0.7656 * Bl + 0.4613 * PSI + -0.5318 * PSI +
-0.222 * Credibility + -0.4181 * Peculiarity + 0.4981 * Peculiarity +
-0.3941 * LaplaceCorrection + 0.5302 1.4872
0.7986 * GiniGain +
-0.0966 * GBI +
-0.8895

Fig. 3. Learned models to the meningitis data mining result dataset.

rule evaluations by a human expert. This is guaranteed with no less than 80%
precisions of all learning algorithms.

Rule Evaluation Models on the Actual Datamining Result Dataset In
this section, we present rule evaluation models to the whole dataset learned with
OneR, J4.8 and CLR, because they are represented as explicit models such as a
rule set, a decision tree, and a set of linear models.

Fig.3 shows rule evaluation models on the actual data mining result: The
rule set of OneR is shown in Fig.3(a), Fig.3(b) shows the decision tree learned
with J4.8, and Fig.3(c) shows linear models to classify each class.

Looking at indices used in learned rule evaluation models, they are not only
the group of indices increasing with a correctness of a rule, but also they are
used some different groups of indices on different models. Almost indices such as
YLI1, Laplace Correction, Accuracy, Precision, Recall, Coverage, PSI and Gini
Gain are the former type of indices on the models. The later indices are GBI
and Peculiality, which sums up difference of antecedents between one rule and
the other rules in the same ruleset. This corresponds to the comment from the
human expert. He said that he evaluated these rules not only correctness but
also his interest based on his expertise

4.2 Constructing Rule Evaluation Models on Artificial Evaluation
Labels

We have also evaluated our rule evaluation model construction method with rule
sets from four datasets of UCI Machine Learning Repository to confirm the lower
limit performances on probabilistic class distributions.

We selected the following four datasets: Mushroom, Heart, Internet Adver-
tisement Identification (called InternetAd later) and Letter. With these datasets,
we obtained rule sets with bagged PART, which repeatedly executes PART[4]
to bootstrapped training sub-sample datasets.



To these rule sets, we calculated the 39 objective indices as attributes of each
rule. As for the class of these datasets, we set up three class distributions with
multinomial distribution. Table4 shows us the datasets with three different class
distributions. The class distribution for ‘Distribution I' is P = (0.35,0.3,0.3)
where p; is the probability for class i. Thus the number of class ¢ in each instance
D; become p; D;. As the same way, the probability vector of ‘Distribution II” is
P = (0.3,0.5,0.2), and ‘Distribution I’ is P = (0.3,0.65, 0.05).

Table 4. Datasets of the rule sets learned from the UCI benchmark datasets

#Mined #Class labels
Rules [T Jlp [ig | "Defolass
Distribution I (0.30) [(0.35) ((0.3%)
Mushroom 30 8 14 8 46.7
InternetAd 107 26 39 42 39.3
Heart 318 97 128 93 40.3
Letter 6340 1908| 2163| 2269 35.8
Distribution II (0.30) |(0.50) |(0.20)
Mushroom 30 1 16 3 53.3
InternetAd 107 30 53 24 49.5
Heart 318 929 140 79 44.0
Letter 6340 1890| 3198| 1252 50.4
Distribution III (0.30) |(0.65) |(0.05)
Mushroom 30 7 21 2 70.0
InternetAd 107 24 79 9 73.8
Heart 318 98 205 15 64.5
Letter 6340 1947] 4062] 331 64.1

Accuracy Comparison on Classification Performances To above datasets,
we have attempted the five learning algorithms to estimate whether their classi-
fication results can go to or beyond the accuracies of just predicting each default
class. The left table of Tableb shows the accuracies of the five learning algo-
rithms to each class distribution of the three datasets. As shown in Tableb, J48
and BPNN always work better than just predicting a default class. However,
their performances are suffered from probabilistic class distributions to larger
datasets such as Heart and Letter.

Table 5. Accuracies(%) on whole training datasets labeled with three different dis-
tributions(The left table). Number of minimum training sub-samples to outperform
%Def. class(The right table).

J48 BPNN SVM CLR OneR J48 BPNN SVM CLR OneR

Distribution I Distribution I

Mushroom 80.0 93.3 56.7 66.7 53.3 Mushroom 8 8 12 18 14

InternetAd 84.1 82.2 299 533 60.7 InternetAd 14 14 - 30 14

Heart 780 758 403 425 54.7 Heart 42 31 66 114 98

Letter 36.8 36.4 30.1 36.6 52.1 Letter 189 217 - 955 305
Distribution II Distribution II

Mushroom 933 933 800 80.0 76.7 Mushroom 6 4 4 6 12

InternetAd 738 794 49.5 59.8 60.7 InternetAd 24 24 52 42 70

Heart 723 69.2 359 47.8 55.7 Heart 52 40 - 104 92

Letter 51.0 51.0 504 50.4 57.0 Letter 897 >1000 451 - >1000
Distribution III Distribution III

Mushroom 933 96.7 700 70.0 76.7 Mushroom 22 14 22 28 22

InternetAd 86.0 90.7 70.1 69.2 720 InternetAd 80 66 - - -

Heart 78.0 71.7 645 65.7 714 Heart 114 94 142 318 182

Letter 64.1 64.3 64.1 64.1 68.3 Letter >1000  >1000 998 >1000 >1000

Evaluation on Learning Curves As same as evaluations of learning curves
on the meningitis rule set, we have estimated the minimum training subsets for
a valid model, which works better than just predicting a default class.

The right table in Table5 shows sizes of minimum training subsets, which
can be constructed more accurate rule evaluation models than percentages of a



default class by each learning algorithm. To smaller dataset, such as Mushroom
and InternetAd, they can construct valid models with less than 20% of given
training datasets. However, to larger dataset, they need more training subsets to
construct valid models, because their performances with whole training dataset
fall to the percentages of default class of each dataset as shown in the left table
in Tableb.

5 Conclusion

In this paper, we have described rule evaluation support method with rule eval-
uation models to predict evaluations for an IF-THEN rule based on objective
indices, re-using evaluations of a human expert.

As the result of the performance comparison with the five learning algo-
rithms, rule evaluation models have achieved higher accuracies than just pre-
dicting each default class. Considering the difference between the actual evalua-
tion labeling and the artificial evaluation labeling, it is shown that the medical
expert evaluated with noticing particular relations between an antecedent and
a class/another antecedent in each rule. In the estimation of robustness to a
new rule with Leave-One-Out, we have achieved more than 75.8% with these
learning algorithms. On the evaluation with learning curves to the dataset of
the actual datamining result, SVM and CLR have achieved more than 95% of
achievement ratio compared to the accuracy of the whole training dataset with
less than 10% of subset of the training dataset with certain human evaluations.
These results indicate the availability of this rule evaluation support method for
a human expert.

As future work, we will introduce a selection method of learning algorithms
to construct a proper rule evaluation model according to each situation. We also
apply this rule evaluation support method to estimate other data mining result
such as decision tree, rule set, and committee of them with objective indices,
which evaluate whole mining results.
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