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Abstract

Conventional studies on knowledge discovery in
databases (KDD) shows that combination of rule in-
duction methods and attribute-oriented generalization
is very useful to extract knowledge from data. However,
attribute-oriented generalization in which concept hier-
archy is used for transformation of attributes assumes
that a given hierarchy is consistent. Thus, if this con-
dition is violated, application of hierarchical knowledge
generates inconsistent rules. In this paper, first, we show
that this phenomenon is easily found in data mining
contexts: when we apply attribute-oriented generaliza-
tion to attributes in databases, generalized attributes
will have fuzziness for classification. Then, we intro-
duce two approaches to solve this problem, one process
of which suggests that combination of rule induction and
attribute-oriented generalization can be used to validate
concept hiearchy. Finally, we briefly discuss the mathe-
matical generalization of this solution in which context-
free fuzzy sets is a key idea.

1 Introduction

Conventional studies on machine learning[11], rule
discovery[2] and rough set methods[5, 13, 14] mainly
focus on acquisition of rules, the targets of which have
mutually exclusive supporting sets. Supporting sets of
target concepts form a partition of the universe, and
each method search for sets which covers this partition.
Especially, Pawlak’s rough set theory shows the family
of sets can form an approximation of the partition of the
universe. These ideas can easily extend into probabilis-
tic contexts, such as shown in Ziarko’s variable precision
rough set model[19]. However, mutual exclusiveness of
the target does not always hold in real-world databases,
where conventional probabilistic approaches cannot be
applied.

In this paper, first, we show that these phenomena
are easily found in data mining contexts: when we

apply attribute-oriented generalization to attributes in
databases, generalized attributes will have fuzziness for
classification, which causes rule induction methods to
generate inconsistent rules. Then, we introduce two so-
lutions. The first one is to introduce aggregation oper-
ators to recover mathematical consistency. The other
one is to introduce Zadeh’s linguistic variables, which
describes one way to represent an interaction between
lower-level components in an upper level components
and which gives a simple solution to deal with the in-
consistencies. Finally, we briefly discuss the mathemat-
ical generalization of this solution in which context-free
fuzzy sets is a key idea. In this inconsistent problem,
we have to take care about the conflicts between each
attributes, which can be viewed as a problem with mul-
tiple membership functions.

2 Attribute-Oriented General-
ization and Fuzziness

In this section, first, a probabilistic rule is defined by us-
ing two probabilistic measures. Then, attribute-oriented
generalization is introduced as transforming rules.

2.1 Probabilistic Rules

2.1.1 Accuracy and Coverage

In the subsequent sections, we adopt the following no-
tations, which is introduced in [10].

Let U denote a nonempty, finite set called the universe
and A denote a nonempty, finite set of attributes, i.e.,
a : U → Va for a ∈ A, where Va is called the domain
of a, respectively.Then, a decision table is defined as an
information system, A = (U,A ∪ {d}).

The atomic formulas over B ⊆ A ∪ {d} and V are
expressions of the form [a = v], called descriptors over
B, where a ∈ B and v ∈ Va. The set F (B, V ) of formulas
over B is the least set containing all atomic formulas over
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B and closed with respect to disjunction, conjunction
and negation.

For each f ∈ F (B, V ), fA denote the meaning of f
in A, i.e., the set of all objects in U with property f ,
defined inductively as follows.

1. If f is of the form [a = v] then, fA = {s ∈ U |a(s) =
v}

2. (f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A =
U − fa

By the use of this framework, classification accuracy and
coverage, or true positive rate is defined as follows.

Definition 1
Let R and D denote a formula in F (B, V ) and a set
of objects which belong to a decision d. Classification
accuracy and coverage(true positive rate) for R → d is
defined as:

αR(D) =
|RA ∩D|
|RA|

(= P (D|R)), and

κR(D) =
|RA ∩D|
|D|

(= P (R|D)),

where |A| denotes the cardinality of a set A, αR(D) de-
notes a classification accuracy of R as to classification
of D, and κR(D) denotes a coverage, or a true positive
rate of R to D, respectively.

1

2.1.2 Definition of Rules

By the use of accuracy and coverage, a probabilistic rule
is defined as:

R
α,κ→ d s.t. R = ∧j ∨k [aj = vk], αR(D) ≥

δα, κR(D) ≥ δκ.

This rule is a kind of probabilistic proposition with
two statistical measures, which is an extension of
Ziarko’s variable precision model(VPRS) [19].2

It is also notable that both a positive rule and a neg-
ative rule are defined as special cases of this rule, as
shown in the next subsections.

1Pawlak recently reports a Bayesian relation between accuracy
and coverage[8]:

αR(D)P (D) = P (R|D)P (D) = P (R,D)

= P (R)P (D|R) = κR(D)P (R)

This relation also suggests that a priori and a posteriori probabil-
ities should be easily and automatically calculated from database.

2This probabilistic rule is also a kind of Rough Modus
Ponens[7].

2.2 Attribute-Oriented Generalization

Rule induction methods regard a database as a deci-
sion table[5] and induce rules, which can be viewed
as reduced decision tables. However, those rules ex-
tracted from tables do not include information about
attributes and they are too simple. In practical situ-
ation, domain knowledge of attributes is very impor-
tant to gain the comprehensiblity of induced knowledge,
which is one of the reasons why databases are imple-
mented as relational-databases[1]. Thus, reinterpreta-
tion of induced rules by using information about at-
tributes is needed to acquire comprehensive rules. For
example, terolism, cornea, antimongoloid slanting of
palpebral fissures, iris defects and long eyelashes are
symptoms around eyes. Thus, those symptoms can be
gathered into a category “eye symptoms” when the lo-
cation of symptoms should be focused on. symptoms
should be focused on. The relations among those at-
tributes are hierarchical as shown in Figure 1. This pro-
cess, grouping of attributes, is called attribute-oriented
generalization[1].

Attribute-oriented generalization can be viewed as
transformation of variables in the context of rule induc-
tion. For example, an attribute “iris defects” should be
transformed into an attribute “eye symptoms=yes”.It
is notable that the transformation of attributes in rules
correspond to that of a database because a set of rules
is equivalent to a reduced decision table. In this case,
the case when eyes are normal is defined as “eye symp-
toms=no”. Thus, the transformation rule for iris defects
is defined as:

[iris-defects = yes]→ [eye-symptoms = yes] (1)

In general, when [Ak = Vl] is a upper-level concept of
[ai = vj ], a transforming rule is defined as:

[ai = vj ]→ [Ak = Vl],

and the supporting set of [Ak = Vl] is:

[Ai = Vl]A =
⋃
i,j

[ai = vj ]a,

where A and a is a set of attributes for upper-level and
lower level concepts, respectively.

2.3 Examples

Let us illustrate how fuzzy contexts is observed when
attribute-oriented generalization is applied by using a
small table (Table 1). Then, it is easy to see that a rule
of “Aarskog”,

[iris-defects = yes]→ Aarskog α = 1.0, κ = 1.0
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Location



Head · · ·
Face · · ·

Eye :



terolism

 hyper
normal
hypo

cornea

 megalo
large
normal

antimongoloid slanting of palpebral fissures
{
yes
no

iris defects
{
yes
no

eyelashes

{
long
normal

· · ·
Noses · · ·
· · · · · ·

Figure 1: An Example of Attribute Hierarchy

Table 1: A Small Database on Congenital Disorders

U round telorism cornea slanting iris-defects eyelashes class
1 no normal megalo yes yes long Aarskog
2 yes hyper megalo yes yes long Aarskog
3 yes hypo normal no no normal Down
4 yes hyper normal no no normal Down
5 yes hyper large yes yes long Aarskog
6 no hyper megalo yes no long Cat-cry
Definitions: round: round face, slanting: antimongoloid slanting of
palpebral fissures, Aarskog: Aarskog Syndrome, Down: Down Syndrome,
Cat-cry: Cat Cry Syndrome.

is obtained from Table 1.
When we apply transforming rules shown in Figure

1 to the dataset of Table 1, the table is transformed
into Table 2. Then, by using transformation rule 1, the
above rule is transformed into:

[eye-symptoms = yes]→ Aarskog.

It is notable that mutual exclusiveness of attributes
has been lost by transformation. Since five attributes
(telorism, cornea, slanting, iris-defects and eyelashes)
are generalized into eye-symptoms, the candidates for
accuracy and coverage will be (2/4, 2/3), (2/4, 3/3),
(3/4, 3/3), (3/4, 3/3), (3/3, 3/3) and (3/4, 3/3), respec-
tively. Then, we have to select which value is suitable
for the context of this analysis.

In [12], Tsumoto selected the minimum value in med-
ical context: accuracy is equal to 2/4 and coverage is
equal to 2/3.

Thus, the rewritten rule becomes the following prob-
abilistic rule:

[eye-symptoms = yes]→ Aarskog,

α = 3/4 = 0.75, κ = 2/3 = 0.67.

This examples show that the loss of mutual exclusive-
ness is directly connected to the emergence of fuziness
in a dataset. It it notable that the rule used for trans-
formation is a deterministic one. When this kind of
transformation is applied, whether applied rule is deter-
ministic or not, fuzziness will be observed. However, no
researchers has pointed out this problem with combina-
tion of rule induction and transformation.

It is also notable that the conflicts between attributes
with respect to accuracy and coverage corresponds
to the vector representation of membership functions
shown in Lin’s context-free fuzzy sets[4].
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Table 2: A Small Database on Congenital Disorders (Transformed)

U eye eye eye eye eye eye class
1 no no yes yes yes yes Aarskog
2 yes yes yes yes yes yes Aarskog
3 yes no no no no no Down
4 yes yes no no no no Down
5 yes yes yes yes yes yes Aarskog
6 no yes yes yes no yes Cat-cry
Definitions: eye: eye-symptoms

2.4 What is a problem ?

The illustrative example in the last subsection shows
that simple combination of rule induction and attribute-
oriented generalization easily generates many inconsis-
tent rules. One of the most important features of this
problem is that simple application of transformation vi-
olates mathematical conditions.

Attribute-value pairs can be viewed as a mapping in a
mathematical context, as shown in Section 2. For exam-
ple, in the case of an attribute “round”, a set of values in
“round”, {yes, no} is equivalent to a domain of “round”.
Then, since the value of round for the first example in a
dataset, denoted by “1” is equal to 1, round(1) is equal
to no. Thus, an attribute is a mapping from examples
to values. In a reverse way, a set of examples is related
to attribute-value pairs:

round−1(no) = {1, 6}.

In the same way, the following relation is obtained:

eyeslashes−1(normal) = {3, 4}.

However, simple transformation will violate this con-
dition on mapping because transformation rules will
change different attributes into the same name of gen-
eralized attributes. For example, if the following two
transformation rules are applied:

round→ eye-symptoms,
eyeslashes→ eye-symptoms,

normal→ no,

long → yes,

then the following relations are obtained:

eye-symptoms−1(no) = {1, 6},
eye-symptoms−1(no) = {3, 4},

which leads to contradiction. Thus, transformed
attribute-value pairs are not mapping because of one
to many correspondence.

In this way, violation is observed as generation of log-
ically inconsistent rules, which is equivalent to mathe-
matical inconsistencies.

3 Solutions

3.1 Join Operators

In Subsection 2.3, since five attributes (telorism, cornea,
slanting, iris-defects and eyelashes) are generalized into
eye-symptoms, the candidates for accuracy and cover-
age will be (2/4, 2/3), (2/4, 3/3), (3/4, 3/3), (3/4,3/3),
(3/3, 3/3), and (3/4, 3/3), respectively. Then, we show
one approach reported in [12]. the minimum value is
selected: accuracy is equal to 2/4 and coverage is equal
to 2/3. This selection of minimum value is a kind of
aggregation, or join operator. In join operators, conflict
values will be integrated into one values, which means
that one to many correspondence is again transformed
into one to one correspondence, which will recover con-
sistencies.

Another example of join operators is “average”. In
the above example, the average of accuracy is 0.71, so if
the average operator is selected for aggregation, then the
accuracy of the rule is equal to 0.71. This solution can
be generalized into context-free fuzzy sets introduced by
Lin[4], which is shown in Section 4.

3.2 Zadeh’s Linguistic Variables

3.2.1 Concept Hierarchy and Information

Another solution is to observe this problem from the
viewpoint of information. After the application of trans-
formation, it is clear that some information is lost. In
other words, transformation rules from concept hierar-
chy are kinds of projection and usually projection loses
substantial amounts of information. Intuitively, over-
projection is observed as fuzziness.

For example, let me consider the following three trans-
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formation rules:

[Round = yes]→ [Eye-symptoms = yes],
[Iris-Defects = yes]→ [Eye-symptoms = yes],
[Telorism = hyper]→ [Eye-symptoms = yes]

One of the most important questions is whether eyes
only contribute to these symptoms.

Thus, one way to solve this problem is to recover infor-
mation on the hierarchical structure for each symptoms.
For example, let us summarize the components of each
symptom and corresponding accuracy into Table 3.

It is notable that even if components of symptoms are
the same, the values of accuracy are not equal to each
other. These phenomena suggest that the degrees of
contribution of components are different in those symp-
toms. In the above examples, the degrees of contribu-
tion of Eye in [Round = yes], [Iris − Defects] and
[Telorism] are estimated as 1/2 (0.5), 3/3 (1.0) and
2/3(0.67), respectively.

3.2.2 Linguistic Variables and Knowledge Rep-
resentation

Zadeh proposes linguistic variables to approximate hu-
man linguistic reasoning[16, 17, 18]. One of the main
points in his discussion is that when human being rea-
sons hierarchical structure, he/she implicitly estimates
the degree of contribution of each components to the
subject in an upper level.

In the case of a symptom [Round = yes], this symp-
tom should be described as the combination of Eye, Nose
and Frontal part of face. From the value of accuracy
in Aarskog syndromes, since the contribution of Eye in
[Round=yes] is equal to 0.5, the linguistic variable of
[Round = yes] is represented as:

[Round = yes] =
0.5 ∗ [Eye] + θ ∗ [Nose] + (0.5− θ) ∗ [Frontal],

where 0.5 and θ are degrees of contribution of eyes and
nose to this symptom, respectively. It is interesting to
see that the real hierarchical structure is recovered by
Zadehfs linguistic variable structure, which also sug-
gests that linguistic variables captures one aspect of
human reasoning about hierarchical structure. Espe-
cially, one important issue is that Zadeh’s linguistic vari-
ables, although partially, represent the degree of interac-
tions between sub-components in the same hierarchical
level, which cannot be achieved by simple application of
object-oriented approach.

Another important issue is that the degree of contri-
bution, which can be viewed as a subset of a member-
ship function, can be estimated from data. Estimation
of membership function is one of the key issues in ap-
plication of fuzzy reasoning, but it is a very difficult to

extract such membership functions from data and usu-
ally they are given by domain experts[9].

In summary, these two important issues suggest that
a dataset can be used to validate a concept hierarchy. If
some inconsistencies are observed after transformation
by a given hierarchy, then some information are thought
to be lost in the process of transformation.3 From the
observation of lost information, we can go further into
the next step to construct more consistent hierarchy or
knowledge representation. Combination of rule induc-
tion methods and attribute- oriented generalization may
play an important role in validation. Also, it may be
possible to measure the quality of concept representa-
tion from data. Although this topic is not discussed in
this paper, evaluation of concept representation is very
important for us to construct complete and sound con-
cept representation. Construction of terminology and
concept representation should be adaptive because our
medical knowledge is dynamic and new knowledge is
coming everyday.

4 Functional Representation of
Context-Free Fuzzy Sets

Lin has pointed out problems with multiple membership
functions and introduced relations between context-free
fuzzy sets and information tables[4]. The main contribu-
tion of context-free fuzzy sets to data mining is that in-
formation tables can be used to represent multiple fuzzy
membership functions. Usually when we meet multiple
membership functions, we have to resolve the conflicts
between functions. Lin discusses that this resolution is
bounded by the context: min, maximum and other fuzzy
operators can be viewed as a context. The discussion in
Section 2 illustrates Lin’s assertion. Especially, when
we analyze relational-database, transformation will be
indispensable to data mining of multi-tables. However,
transformation may violate mutual exclusiveness of the
target information table. Then, multiple fuzzy member-
ship functions will be observed.

Lin’s context-free fuzzy sets shows such analyzing pro-
cedures as a simple function as shown in Figure 4. The
important parts in this algorithm are the way to con-
struct a list of membership functions and the way to
determine whether this algorithm outputs a metalist of
a list of membership functions or a list of numerical val-
ues obtained by application of fuzzy operators to a list
of membership functions.

3In this approach, we assume that data does not include errors
of experts’ decisions.
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Table 3: Components of Symptoms

Symptoms Components Accuracy
[Round = yes] : [Eye, Nose, Frontal] α = 1/2
[Iris−Defects = yes] : [Substructure of Eye] α = 3/3
[Telorism = hyper] : [Eye, Nose, Frontal] α = 2/3

5 Conclusions

This paper shows that combination of attribute-oriented
generalization and rule induction methods generate in-
consistent rules and proposes one solution to this prob-
lem. It is surprising that tranformation of attributes
will easily generate this situation in data mining from
relation databases: when we apply attribute-oriented
generalization to attributes in databases, generalized at-
tributes will have fuzziness for classification. In this
case, we have to take care about the conflicts between
each attributes, which can be viewed as a problem
with linguistic uncertainty or multiple membership func-
tions. Finally, the author pointed out that these con-
texts should be analyzed by using two kinds of fuzzy
techniques: one is introduction of aggregation opera-
tors, which can viewed as those on multiple membership
functions. The other one is linguistic variables, which
captures the degree of contribution.

This paper is still a preliminary research on combina-
tion of medical terminology and KDD methods. Further
work should be done, but this combination may be use-
ful to construct and evaluate medical terminology and
concept representation. It will be our future work to
introduce a measure for evaluation of terminologies and
to formalize validation of terminology and concept rep-
resentation from data.
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